高中数学知识点总结及公式大全(2)
高中数学知识点总结及公式:两角和公式
1、sin(a+b)=sinacosb+cosasinb;sin(a-b)=sinacosb-sinbcosa
2、cos(a+b)=cosacosb-sinasinb;cos(a-b)=cosacosb-sinasinb
3、tan(a+b)=(tana+tanb)/(1-tanatanb);tan(a-b)=(tana-tanb)/(1+tanatanb)
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga);ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
高中数学知识点总结及公式:倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
高中数学知识点总结及公式:半角公式
1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))
4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))
高中数学知识点总结及公式:和差化积
1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb
5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
高中数学知识点总结及公式:空间几何体
1、高中数学知识点总结空间几何体公式知识点直棱柱和正棱锥的表面积
设棱柱高为h、底面多边形的周长为c、则得到直棱柱侧面面积计算公式:
S=ch、即直棱柱的侧面积等于它的底面周长和高的乘积、
正棱锥的侧面展开图是一些全等的等腰三角形、底面是正多边形、
如果设它的底面边长为a、底面周长为c、斜高为h'、则得到正n棱锥的侧面积计算公式
S=1/2*nah'=1/2*ch'、即正棱锥的侧面积等于它的底面的周长和斜高乘积的一半、
2、空间几何体公式知识点正棱台的表面积
正棱台的侧面展开图是一些全等的等腰梯形、
设棱台下底面边长为a、周长为c、上底面边长为a'、周长为c'、斜高为h'则得到正n棱台的侧面积公式: S=1/2*n(a+a')h'=1/2(c+c')h'、
3、空间几何体公式知识点球的表面积
S=4πR2、即球面面积等于它的大圆面积的四倍、
4.空间几何体公式知识点圆台的表面积
圆台的侧面展开图是一个扇环,它的表面积等于上,下两个底面的面积和加上侧面的面积,即
S=π(r'2+r2+r'l+rl)
空间几何体公式知识点空间几何体体积计算公式
1、长方体体积
V=abc=Sh
2、柱体体积
所有柱体
V=Sh、即柱体的体积等于它的底面积S和高h的积、
圆柱
V=πr2h、
3、棱锥
V=1/3*Sh
4、圆锥
V=1/3*πr2h
5、棱台V=1/3*h(S+(√SS')+S')
6、圆台
V=1/3*πh(r2+rr'+r'2)
7、球
V=4/3*πR3
下一页高中数学知识点总结及公式