北师大版九年级数学上期末试卷(2)
北师大版九年级数学上期末试卷
北师大版九年级数学上期末试卷参考答案
一、选择题(每小题3分,共30分)
1.B 2.A 3.C 4.D 5.B 6.B 7.C 8.D 9.C 10.C
二、填空题(每小题4分,共24分)
11.x1=5,x2=-1 12. -3 13. 14 600 15 6 16
17.x1=-2,x2=3
18.解:∵.A(1,2)在反比例函数y= 的图象上,
∴K=2
又直线y=x+b过点(1,2),∴b=1
∴反比例函数的解析式为y=
一次函数的解析式为y=x+1
19.证明:∵四边形ABCD是正方形,∵AD=DC,∠EAD=∠PCD=900
又∵AE=CF,∴∆EAD≌∆FCD ∴ DE=DF
20.解:A(1,0),B(0,-1)在一次函数y=kx+b的图象上,
∴ 即
∴一次函数的解析式为y=x-1
(2)一次函数y=x-1与y= 交于点C,且点C的纵坐标为1,由1=x-1,得x=2,即y= 的图象过点(2,1),∴m=2
∴反比例函数的解析式为y=
21.解:设三名男生记为男1,男2,男3,2名女生记为女1,女2,则从这5名同学中随机抽取2名的所有情况为
所以从这5名同学中随机抽取2名,至少有一名女生的概率是: 即
22.(1)证明:∵ABCD是矩形,O为BD的中点,∠BCD=900
又∵E为CD的中点,∴OE∥BC,ED=EC ∠OED=900
又∵CF∥BD,∴∠DOE=∠CFE ∴∆ODE≌∆FCE
(2)四边形ODFC是菱形,
由(1) ∆ODE≌∆FCE
∴OD=FC,又OD∥CF
∴四边形ODFC是平行四边形 又OF⊥CD
∴平行四边形ODFC是菱形
23.解:设人行道的宽度为x米,依题意得:
2×
即:3x2-32x+52=0
解得:x1=2,x2= (不合题意舍去)
∴人行道的宽度为2米。
24.解:RtABE中,AE= ∴AF=
由Rt∆AFG∽Rt∆ABE得: 即 ∴GF=
过点F作FM∥AB交BC于点M
则M为BE的中点,∴ ∴
25.(1)证明:∵ABCD是菱形,
∴DA=DC ∠ DAP=∠CDP
又DP=DP
∴∆APD≌∆CPD
(2)由(1)∆APD≌∆CPD
得:∠PAE=∠PCD
又由DC∥FB得:∠PFA=∠PCD
∴∠PAE=∠PFA
又∠APE=∠AFP
∴∆APE∽∆FPA
(3)线段PC、PE、PF之间的关系是:
PC2=PE•PF
∵∆APE∽∆FPA
∴
∴PA2=PE•PF
又PC=PA
∴PC2=PE•PF
看了“北师大版九年级数学上期末试卷”的人还看了: