线性代数用英语怎么说
线性代数用英语怎么说
线性代数是数学的一个分支,它的研究对象是向量,向量空间,线性变换和有限维的线性方程组。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。那么你知道线性代数用英语怎么说吗?下面一起来学习一下吧。
线性代数的英语说法:
linear algebra
线性代数相关英语表达:
线性代数基本定理 Fundamental theorem of linear algebra
线性代数群 Linear Algebraic Groups
线性代数引论 Introduction to Linear Algebra
线性代数及应用 Linear Algebra and its Applications
线性代数的英语例句:
1. Systems of linear differential equations can be handled by using the methods of linear algebra.
线性微分方程组可以应用线性代数中的方法求解.
2. With algebraic multi - grid method ( AMG ), linear system of equations are solved.
利用代数多重网格法 求解 了这个线性代数方程组.
3. Matrix proofs of several theorems in linear algebra are given.
摘要给出了线性代数中几个定理的矩阵证法.
4. One subject in linear algebra and some experience with proofs.
修过任一线性代数课程,以及要有证明的经验.
5. Now, I finally understand that math, especially linear algebra are very useful.
读到研究生, 终于知道数学, 尤其是线性代数的用处了.
6. This is a basic subject on matrix theory and linear algebra.
基本内容是讲授矩阵理论和线性代数.
7. Ritz algorithm, for numerical linear algebra complete source code, has been tested.
丽嘉算法, 数值线性代数完整的源代码, 已经过测试.
8. Goal | Establish the fundamental background of linear algebra.
|课程目标|绍基本线性代数的内容,强调各个主题的计算与几何观念.
9. This treatise use some mathematical Analysis methods and knowledge to prove several linear algebra problems.
为此,本文运用数学分析的有关知识和方法论证线性代数中的某些问题.
10. The three - parametric method is developed to solve large scale linear algebraic equations with periodic block - tridiagonal matrix.
建立了求解系数矩阵为周期块状三对角矩阵的大型线性代数方程组的三参数组方法.
11. ScaLapack is a library of high performance linear algebra routines for distributed memory MIMD computers.
ScaLapack是 一个并行计算软件包,适用于分布存储的MIMD并行机.ScaLapack提供若干线性代数来解功能,具有高效、可移植.
12. Numerical topics include dense and sparse lar algebra, N - body problems, and Fourier transforms.
课程的数学主题包括稠密/疏线性代数 、 体问题和傅立叶变换.
13. These range from physics , and liner algebra , linear algebra to anthropology, political science, -- even schooldiving.
范围从物理, 线性代数到人类学, 政治科学, 甚至潜水.
14. Numerical topics include dense and sparse linear algebra, N body problems, and Fourier transforms.
课程的数学主题包括稠密╱稀疏线性代数 、 N体问题和傅立叶变换.
15. Ordinary differential equations, Partial differential equations, Linear algebra, Special functions, Calculus of variation.
常微分方程, 偏微分方程, 线性代数, 简单特殊函数, 变分学.