五年级数学知识点梳理归纳
失败乃成功之母,重复是学习之母。学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科目的学习方法都是不断重复学习。下面是小编给大家整理的一些五年级数学的知识点,希望对大家有所帮助。
目录
小学五年级上册数学《简易方程》知识点
1、方程的意义
含有未知数的等式,叫做方程。
2、方程和等式的关系
3、方程的解和解方程的区别
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、列方程解应用题的一般步骤
(1)弄清题意,找出未知数,并用表示。
(2)找出应用题中数量之间的相等关系,列方程。
(3)解方程。
(4)检验,写出答案。
5、数量关系式
加数=和-另一个加数减数=被减数–差被减数=差+减数
因数=积另一个因数除数=被除数商被除数=商除数
五年级数学上册期末复习计划
一、把知识分块,进行分类整理复习。
五年级数学一共七个单元,但是重点知识分为三块,一是计算类:小数乘除法和解简易方程;二是图形面积类:平行四边形、三角形、梯形以及组合图形的面积计算;三是问题解决:小数乘除法的解决问题以及用方程解决问题。把知识分类也能让学生明了本册学习的重点内容,在练习时能对症下药,即题目到底是考查了哪一个知识点,这样学生面对一些陌生的题目时也不会手足无措。
二、多训练计算。
本学期的计算占的比重相当大,于是让每个学生都掌握计算法则,会计算每种类型的题目。最近一个月我每天会让学生做六道计算题。虽然让学生练习了,但是我做的并不好,检查不到位,只是让小组长把这个家庭作业落实,学生纠错率不高。在接下来的一段时间我准备在课代表以及小组长的配合下,每天不定时抽查学生的家庭作业,并掌握每个学生的计算能力,程度的在基础计算上让学困生得分。
三、把每班学生按不同程度分类。
优等生、中等程度的学生、学困生。在复习时有所侧重,优等生在掌握基础题的同时,多做一些拔高的习题;中等生能够把基础知识、概念、计算做的非常扎实,拔高题并不做要求;学困生是个大难题,他们基础差,学习习惯不好,甚至有厌学情绪,多让他们在学习中体验成功乐趣是重点,让他们有学习的欲望,基本的小数乘除法、简单的方程,一定要重复训练,对他们进行模式训练,记忆为主。
“一帮一计划“也有所改动,原来优等生带学困生,但是实施过程中发现,有些学生在给学困生讲题时,极其不耐烦,总是听到有人抱怨认为很简单的题目也不会做,影响很不好,于是我大胆决定,让优等生帮助中等生,中等生带学困生,这样差距小一些,实施起来也比较容易些,而且发挥中等生的作用,一方面避免了有些中等生听不懂装懂,理解知识不透彻的坏习惯,另一方面通过帮助别人他也能体验成功,对自身提高很有帮助。
最后,复习一定不要只顾做试卷而脱离课本,且不说期末考试的题目都是书上例题的变形,更重要的是课本上的习题都是基于课程标准的,不会超纲,有代表性,对于学生理解定义、概念有很大的帮助作用。
总之,期末复习一定要有计划性,根据本班学生制定一个具有时效性的计划,能对症下药,这样的复习应该会有比较显著的效果!
五年级数学教案
教学目标:
(一)掌握整数、小数四则混合运算的运算顺序,会使用中括号,能够比较熟练地计算整数、小数四则混合运算式题。
(二)通过对整数、小数四则混合运算的运算顺序的总结、归纳,提高学生的抽象概括能力。
(三)培养学生养成良好的学习习惯,提高学生的计算能力。
教学重点:
掌握整数、小数四则混合运算的运算顺序。
教学难点:
提高学生计算正确率以及约等号的正确使用。
教学过程:
一、复习准备
1.口算
12+0.12= 7.2-0.2= 3.5÷0.35=
2.95+0.05= 5-0.6= 2.8÷0.14=
8÷12.5= 1.2+2.8-3.99= 4×1.72=
3.74+6.26= 4.5×6= 0.25×4÷0.2=
2÷4= 20×0.2= 20.75-9.5=
3.5×8×0.125=
2.提问
(1)我们学过哪几种运算?
(2)我们把加法、减法、乘法、除法统称为什么运算?(加法、减法、乘法、除法统称为四则运算。)
(3)整数四则混合运算的顺序是什么?
二、学习新课
1.学习例1:3.7-2.5+4.6= 3.6×6÷0.9=
(1)思考:以上两题中分别含有什么运算?运算顺序怎样?
(2)学生试算后订正。
3.7-2.5+4.6
=1.2+4.6
=5.8
3.6×6+0.9
=21.6÷0.9
=24
(3)小结运算顺序
①教师讲解:加法和减法叫做第一级运算,乘法、除法叫做第二级运算。
②以上两题中分别含有几级运算?运算顺序怎样?(①题中只含有第一级运算,按从左往右依次计算;②题中只含有第二级运算,也按从左往右依次计算。)
③谁能用简明的语言概括以上两题的运算顺序?(一个算式里,如果只含有同一级运算,要从左往右依次计算。)
2.学习例2:35.6-5×1.73= 6.75+2.52÷1.2=
(1)观察以上两题中含有几级运算?应先做哪步运算,后做哪步运算?
(2)学生计算后订正。
(3)小结。
以上两题都是含有两级运算的算式,应先做哪级运算,后做哪级运算?
讨论得出:一个算式里,如果含有两级运算,要先做第二级运算,后做第一级运算。
(4)练习:先说出运算顺序,再算出得数。
①P37“做一做”;②3.6÷1.2+0.5×5。
思考:①上题如果要先算1.2+0.5应怎么办?(加小括号。)
②如果要先算(1.2+0.5)×5应怎么办?(加中括号。)
教师介绍:小括号“( )”是公元17世纪由荷兰人吉拉特首先使用。中括号“[ ]”是公元17世纪首次出现在英国的互里士的著作中。
小括号和中括号的作用是什么呢?(改变算式中的运算顺序。)
3.试做例3:3.6÷(1.2+0.5)×5= 3.69÷[(1.2+0.5)×5]=
(1)两题运算顺序是怎样的?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)
(2)学生试做
3.6÷(1.2+0.5)×5
=3.6÷1.7×5
3.6÷[(1.2+0.5)×5]
=3.6÷[1.7×5]
=3.6÷8.5
计算中出现3.6÷1.7和3.6÷8.5除不尽时,教师讲解
在四则混合运算过程中,遇到除法的商的小数位数较多或出现循环小数时,一般保留两位小数,再进行计算。
要想保留两位小数,只需除到第几位?(一般只需除到第三位小数,用“四舍五入法”保留两位小数。)
学生继续计算后,订正
3.6÷(1.2+0.5)×5
=3.6÷1.7×5
≈2.12×5
=10.6
3.6÷[(1.2+0.5)×5]
=3.6÷[1.7×5]
=3.6÷8.5
≈0.42
提问:为什么①题中第二步要用约等于号“≈”,而第三步却要用等号“=”。(因为在第二步计算时,3.6÷1.7除不尽,在第二步计算时,要取它的商的近似值2.12,所以在第二步要用“≈”连接;而第三步用2.12乘以5,得到的积10.6是准确的结果,应该用等号连接。)
五年级数学知识点梳理归纳相关文章: