学习啦 > 学习方法 > 各学科学习方法 > 数学学习方法 >

一元一次方程知识点

时间: 泽慧0 分享

一元一次方程是一种最简单的方程,它只含有一个未知数,并且未知数的最高次数是。以下是小编为大家收集的关于一元一次方程知识点的相关内容,供大家参考!

一元一次方程知识点

一元一次方程知识点

1、等式:用“=”号连接而成的式子叫等式。

2、等式的性质:等式性质1:等式两边都加上(或减去)同一个数(或式子),结果仍相等。等式性质2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等。

3、方程:含未知数的等式,叫方程(方程是含有未知数的等式,但等式不一定是方程)。

4、方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。

5、移项:把等式一边的某项变号后移到另一边叫移项。移项的依据是等式性质1(移项变号)。

6、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

7、一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0)。

8、一元一次方程解法的一般步骤:化简方程:分数基本性质;去 分 母:同乘(不漏乘)最简公分母;去 括 号:注意符号变化;移 项:变号(留下靠前);合并同类项:合并后符号;系数化为1:除前面

9、列一元一次方程解应用题(1)读题分析法(多用于“和,差,倍,分问题”)仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。(2)画图分析法(多用于“行程问题”)

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

一元一次方程应用题

1、一只轮船在相距80千米的码头间航行,顺水需4小时,逆水需5小时,则水流速度为多少?

2、一艘轮船往返于甲、乙码头之间,顺水航行3小时,逆水航行3.5小时,若轮船在静水中的速度为每小时26千米,(1)求水流速度;(2)求两码头的距离。

3、某牧场,放养的鸵鸟和山羊共70只,已知鸵鸟和山羊的腿数之和为196,则鸵鸟的头数和山羊分别多少只?

4、一运输队运输一批货物,每辆车装8吨,最后一辆车只装6吨,如果每辆车装7.5吨,则有3吨装不完。运输队共有多少辆车?这批货物共有多少吨?

5、一个两位数,十位上的数字是个位上数字的2倍,如果把个位上的数与十位上的数对调得到的数比原数小36,求原来的两位数.

6、某区中学生足球联赛共赛8轮(即每队均需赛8场),胜一场得3分,平一场得1分,负一场得0分。在这次足球联赛中,小 平安队踢平的场数是所负场数的2倍,共得17分,试问该队胜了几场?

7、包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?

8、某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是多少?

9、两站相距275千米,慢车以每小时行驶50千米的速度从甲站开往乙站,1小时后,快车以每小时75千米的.速度从乙站开往甲站,那么慢车开出几小时后与快车相遇? 19、把若干本书发给学生,如果每人发4本,还剩下25本,如果每人发5本,还差5本,问学生有多少人?

10、一列车车身长200米,它经过一个隧道时,车速为每小时60千米,从车头进入隧道到车尾离开隧道共2分钟,求隧道长。

11、“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元,“神州行”不缴月租费,每通话1分钟,付话费0.6元,(1)一个月通话多少分钟,两种移动通信费用相同?

(2)怎样选择哪种移动通信合算?

12. 甲、乙两池共存水40吨,甲池注水4吨,乙池出水8吨后,两池水恰好相等,求甲、乙两池原有多少吨水?

13. 某七年级学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/小时,运货汽车的速度为35千米/小时, ?”(涂黑部分表示补墨水覆盖的若干文字),请将这道作业题补充完整,并列方程解答.

14. 有一个只许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天,王老师到达道口时,发现由于拥挤,每分钟只能3人通过道口,此时,自己前面还有36个人等待通过(假定先到的先过,王老师过道口的时间忽略不计),通过道口后,还需7分钟到达学校.

(1)此时,若绕道而行,要15分钟到达学校,从节省时考虑,王老师应选择绕道去学校,还是选择通过拥挤的道口去学校?

(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维持秩序期间,每分钟仍有3人通过道口),结果王老师比拥挤的情况下提前了6分钟通过道口,问维持秩序的时间是多少?

15、甲,乙两人登山,甲每分登高10米,并且先出发30分,乙每分登高15米,两人同时登上山顶.甲有多少时间登山?这座山高?

16、电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车速度比电气机车速度的5倍还快20千米/时,半小时后两车相遇。两车的速度各是多少?

17、某中学的学生自己动手整修操场,如果让初一学生单独工作需要7.5个小时完成,如果让初二学生单独工作需要5小时完成,如果让初一和初二一起工作1个小时,再有初二学生完成剩余部分共需要多少时间完成?

18、一项工程,80小时完成,先计划先由一部分人做2小时,再增加5人做8

19、有一个三位数,它的个位数字为比百位数大1,十位数字比个位树字的一半少1,如果把个位数字当成百位数字,百位数字当成了十位数字,十位数字当成了个位数字,那么所得的新数与原数之和为1611,原来的三位数是多少?

20、有甲乙两个牧童,甲对乙说:把你的一只羊给我1只,我的羊数就是你的2倍。乙回答说:最好还是把你的一只羊给我1只,我们的羊数就一样了。 两个牧童各有多少只羊? 31、现对某商品降低10%促销,为了使销售价总额不变,销售量要比原价销售时增加百分之几? 32、有一些相同的房间需要粉刷墙面,一天3名1级技工去粉刷8个房间,结果其中有50m2墙面未来得及刷同样时间内5名2级技工粉刷了10个房间之外,还多刷了另外的40m2墙面,每一名1级技工比2级技工一天多粉刷10m2墙面,求每个房间需要粉刷的墙面面积?

21、甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进。已知两人在上午8点同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米。求A,B两地的路程。

22、已知5台A型机器装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个每台A型机器比B型机器一天多生产一个产品,求每箱有多少个产品? 37、一辆大气车原来的行驶速度是30千米1小时,现在开始均匀加速,每小时提速20千米1小时;一辆小气车原来行驶速度是90千米1小时,现在开始均匀减速,每小时减速10千米1小时。经过多长时间两辆车的速度相等?这时车速是多少?

23、京沪高速公路全长1262千米,一辆汽车从北京出发,匀速行驶5小时后,提速20千米/时;又匀速行驶5小时后,减速10千米/小时;有匀速行驶5小时后到达上海。求各段时间的车速。

24、红光服装厂要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?

25、甲、乙、丙三种货物共有167吨,甲种货物比乙种货物的2倍少5吨,丙种货物比甲种货物的 多3吨,求甲、乙、丙三种货物各多少吨?

26、有蔬菜地975公顷,种植青菜、西红柿和芹菜,其中青菜和西红柿的面积比是3∶2,种西红柿和芹菜的面积比是5∶7,三种蔬菜各种的面积是多少公顷?

27、大红,小红过年收到的压岁钱共1000元,大红把他的压岁钱按一年期教育储蓄存入银行,年利率为1.98%,免收利息税;小红把他的压岁钱买了月利率为2.15‰的债券,但要交纳20%的利息税,一年后两人的到的收益恰好相等,两人压岁钱个是多少

28、建筑工人在施工中,使用一中混凝土,是由水、水泥、黄沙、碎石搅拌而成的,这四种原料的重量的比是0.7:1:2:4.7,搅拌这种混凝土2100千克,分别需要水、水泥、黄沙、碎石多少千克?

29、学校开展植树活动,甲班和乙班共植树31棵,其中甲班植树数比乙班植树数的2倍多一棵,求两班各植树多少棵?

30、小华在日历上任意找出一个数,发现它连同上、下、左、右的共5个数的和为85,请求出小华找的数。

31、用化肥若干千克给一块麦田施肥,每亩用6千克,还差17千克;每亩用5千克,还多3千克,这块麦田有多少亩?

32、毕业生在礼堂入座,1条长凳坐3人,有25人坐不下;1条长凳坐4人,正好空出4条长凳,则共有多少名毕业生?长凳有多少条?

33、修一条路,A队单独修完要20天,B队单独修完要12天。现在A队单独修4天后,A、B两队合修还需多少天才能完成?

34、某种大衣,先安成本提高提高50%标价,再以8折出售,结果获利80元。这件大衣的成本是多少元?

35、某商店经商一种商品,由于进货价降低(m+6)%,求m的值?5%,出售价不变。

一元一次方程训练题

1. 0.5x-0.7=6.5-1.3x 2、1-2(2x+3)= -3(2x+1)

3、2(x-2)-3(4x-1)=9(1-x) 4、 2(x+1)-24=3(x-2)

2、7(2x-1)-3(4x-1)=4(3x+2)-1; 6、(5y+1)+ (1-y)= (9y+1)+ (1-3y

3、[ ( 20×)-4 ]=x+2; 8、20%+(1-20%)(320-x)=320×40%

4、2(x-2)+2=x+1 10、2(x-2)-3(4x-1)=9(1-x)

5、11x+64-2x=100-9x 12、15-(8-5x)=7x+(4-3x)

6、1 2x-10.3x=15

7、2 0.52x-(1-0.52)x=80

8、5 3x+5(138-x)=540 20、6 3x-7(x-1)=3-2(x+3)

一元一次方程练习题

1、已知关于x、y的方程式(m2-4)x2+(m+2)x+(m+1)y=m+5,当m时,它是一元一次方程;当m 时,它是二元一次方程。

二、选择题(每题3分共24分)

8、设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米。求x、u、v。根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()

A、x=u+4B、x=v+4C、2x-u=4 D、x-v=4

三、解答题

1、在y=ax2+bx+c中,当x=0时,y的值是-7,x=1时y的值是-9,x=-1时y的值是-3,求a、b、c的值,并求x=5时y的值。(6分)

2、解下列方程组(每题5分,共10分)

当比赛进行到第12轮结束时,该队负3场,共积19分。

问:(1)该队胜,平各几场?(2)若每一场,每名参赛队员均得出场费500元,试求该队每名队员在12轮比赛结束后总收入。

5、有三部楼梯,分别是五步梯、七步梯、九步梯,每攀沿一步阶梯上升的高度是一致的。每部楼梯的扶杆长(即梯长)、顶档宽、底档宽如图所示,并把横档与扶杆榫合处称作联结点(如点A)。(8分)

(1)通过计算,补充填写下表:

(2)一部楼梯的成本由材料费和加工费组成,假定加工费以每个联结点1元计算,而材料费中扶杆的单价与横杆的单价不相等(材料损耗及其它因素忽略不计)。现已知一部五步梯、七步梯的成本分别是26元、36元,试求出一部九步梯的成本。

一元一次方程练习题参考答案

一、填空题

1、-2,2;2、2、- ,x=5y=1,x=8y=2;3、-1;

4、 ,12;5、0;6、2;7、-1,-1;8、3,3;

9、10;10、x=1y=16,x=2y=12,x=3y=8,x=4y=4;

11、4;12、x= y= ;13、1;14、x=0y=1;15、12;

16、-43;17、42,15;18、6,3。

二、选择题

1、C;2、C;3、B;4、D;5、C;6、D;7、B;

8、A。

三、解答题

1、a=1,b=-3,c=-7;当x=3时,y=3。

2、(1)x= y= ;(2)x=-1y=2z=-3

3、设一只小猫x元,一只小狗y元,则x+2y=702x+y=50,解得x=10y=30,答一只小猫10元,一只小狗30元。

4、解(1)设该队胜x场,平y场,则x+y+3=123x+y=19,解得x=5y=4,答该队胜5场,平4场。

(2)5×1500+4×700+12×500=16300(元)

答该队每名队员在12轮比赛结束后总收入为16300元。

5、解:(1)七步梯、九步梯的扶杆长分别是5米、6米;横档总长分别是3.5米、5.4米(各1分);联结点个数分别是14个、18个。

(2)设扶杆单价为x元/米,横档单价为y元/米。依题意得4x+2y+1×10=265x+3.5y+1×14=36即2x+y=85x+3.5y=22,解得x=3y=2,故九步梯的成本为6×3+5.4×2+1×18=46.8(元)。

2159732