高中数学常见的知识点有哪些
数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。下面小编为大家带来高中数学常见的知识点有哪些,希望大家喜欢!
高中数学常见的知识点
一、集合、简易逻辑
1、集合;
2、子集;
3、补集;
4、交集;
5、并集;
6、逻辑连结词;
7、四种命题;
8、充要条件。
二、函数
1、映射;
2、函数;
3、函数的单调性;
4、反函数;
5、互为反函数的函数图象间的关系;
6、指数概念的扩充;
7、有理指数幂的运算;
8、指数函数;
9、对数;
10、对数的运算性质;
11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)
1、数列;
2、等差数列及其通项公式;
3、等差数列前n项和公式;
4、等比数列及其通顶公式;
5、等比数列前n项和公式。
四、三角函数
1、角的概念的推广;
2、弧度制;
3、任意角的三角函数;
4、单位圆中的三角函数线;
5、同角三角函数的基本关系式;
6、正弦、余弦的诱导公式;
7、两角和与差的正弦、余弦、正切;
8、二倍角的正弦、余弦、正切;
9、正弦函数、余弦函数的图象和性质;
10、周期函数;
11、函数的奇偶性;
12、函数的图象;
13、正切函数的图象和性质;
14、已知三角函数值求角;
15、正弦定理;
16、余弦定理;
17、斜三角形解法举例。
五、平面向量
1、向量;
2、向量的加法与减法;
3、实数与向量的积;
4、平面向量的坐标表示;
5、线段的定比分点;
6、平面向量的数量积;
7、平面两点间的距离;
8、平移。
六、不等式
1、不等式;
2、不等式的基本性质;
3、不等式的证明;
4、不等式的解法;
5、含绝对值的不等式。
七、直线和圆的方程
1、直线的倾斜角和斜率;
2、直线方程的点斜式和两点式;
3、直线方程的`一般式;
4、两条直线平行与垂直的条件;
5、两条直线的交角;
6、点到直线的距离;
7、用二元一次不等式表示平面区域;
8、简单线性规划问题;
9、曲线与方程的概念;
10、由已知条件列出曲线方程;
11、圆的标准方程和一般方程;
12、圆的参数方程。
八、圆锥曲线
1、椭圆及其标准方程;
2、椭圆的简单几何性质;
3、椭圆的参数方程;
4、双曲线及其标准方程;
5、双曲线的简单几何性质;
6、抛物线及其标准方程;
7、抛物线的简单几何性质。
九、直线、平面、简单何体
1、平面及基本性质;
2、平面图形直观图的画法;
3、平面直线;
4、直线和平面平行的判定与性质;
5、直线和平面垂直的判定与性质;
6、三垂线定理及其逆定理;
7、两个平面的位置关系;
8、空间向量及其加法、减法与数乘;
9、空间向量的坐标表示;
10、空间向量的数量积;
11、直线的方向向量;
12、异面直线所成的角;
13、异面直线的公垂线;
14、异面直线的距离;
15、直线和平面垂直的性质;
16、平面的法向量;
17、点到平面的距离;
18、直线和平面所成的角;
19、向量在平面内的射影;
20、平面与平面平行的性质;
21、平行平面间的距离;
22、二面角及其平面角;
23、两个平面垂直的判定和性质;
24、多面体;
25、棱柱;
26、棱锥;
27、正多面体;
28、球。
十、排列、组合、二项式定理
1、分类计数原理与分步计数原理;
2、排列;
3、排列数公式;
4、组合;
5、组合数公式;
6、组合数的两个性质;
7、二项式定理;
8、二项展开式的性质。
十一、概率
1、随机事件的概率;
2、等可能事件的概率;
3、互斥事件有一个发生的概率;
4、相互独立事件同时发生的概率;
5、独立重复试验。
必修一函数重点知识整理
1、函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(—x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2、复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3、函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的对称曲线C2的方程为f(y—a,x+a)=0(或f(—y+a,—x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b—y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;
4、函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
5、方程k=f(x)有解k∈D(D为f(x)的值域);
6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7、(1)(a>0,a≠1,b>0,n∈R+);
(2)l og a N=(a>0,a≠1,b>0,b≠1);
(3)l og a b的符号由口诀“同正异负”记忆;
(4)a log a N= N(a>0,a≠1,N>0);
8、判断对应是否为映射时,抓住两点:
(1)A中元素必须都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10、对于反函数,应掌握以下一些结论:
(1)定义域上的单调函数必有反函数;
(2)奇函数的反函数也是奇函数;
(3)定义域为非单元素集的偶函数不存在反函数;
(4)周期函数不存在反函数;
(5)互为反函数的两个函数具有相同的单调性;
(6)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。
11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13、恒成立问题的处理方法:
(1)分离参数法;
(2)转化为一元二次方程的根的分布列不等式(组)求解。
拓展阅读:高中数学复习方法
1、把答案盖住看例题
例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。
2、研究每题都考什么
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。
3、错一次反思一次
每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。
学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。
4、分析试卷总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
怎么样学好高中数学
一、数学公式定理掌握好
基本的是做课本上的例题,课本上的例题思路比较简单,一个知识点对应的一个例题,把这些例题看过一遍后,能自己做出来,做题过程是最好的记忆数学公式定理的过程,这一步不能省,不要想办法背数学公式定理,只有边用边记忆,才能真正的理解和应用。
课本上的例题做完,接着课后练习也要跟着做,课后练习的一些题目是综合题,把新的知识点和前面学过的知识点结合起来,帮助进步一步学习和巩固。
二、进行专题、难题训练提高
做题的时候不要怕难题,有的学生看到难题就放下来,一直练习自己会做的题目,这样很难得到提高,可以尝试多做难题,不要有畏惧心理,如果一直不去攻克难题,那考试分数肯定提不上来。
首先,看到难题要大胆的去做,思维活跃起来,多想知识点,这个方法不行,没关系,再分析,再审题,找其他的方法,如果一直不会,可以参考答案,看看答案里是怎样答题的,解题思路是什么样的,里面的解题方法是自己不会的还是自己会的没有想到的,然后自己去总结去反思。
三、记错题、看错题、解错题
高中数学建议准备一个错题本,特别是高三的学生!高中一般的错题都是学生这道题考的知识点没有掌握好,或者不知道这种题型该如何去解答,基本上没有因为计算失误而出现的错题了。
复习数学的方法有哪些
1.多动脑思考
高中数学一直是很多同学的噩梦,因为数学的公式和知识点比较多,导致很多的同学不愿去学,感觉那么多的知识点很难学会。,高三网小编表示到了高三的复习阶段,通过复习,高中生能检验出自己到底哪里会哪里不会,因此增强自己听课的主动性。在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。
2.强化自己学习训练
要是想学好高中数学,必须做的一件事就是做大量的题,数学不一定好,因袭要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的定式训练是必要的。尽管复习时间紧张,但我们仍然要注意回归课本。要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练、复习才有实效。
3.养成良好的学习习惯
学习高三数学必须养成良好的审解题解题习惯,如仔细阅读题目,看清数字,规范解题格式,做到审题要慢解题要快,注重过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位学生必备的,以便以后查询。