学习啦>学习方法>各学科学习方法>数学学习方法>

证明角平分线判定方法

时间: 学科0 分享

从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线,三角形三条角平分线的交点叫做三角形的内心。下面小编给大家带来证明角平分线判定方法,希望能帮助到大家!

证明角平分线判定方法

角的内部到角的两边距离相等的点,都在这个角的平分线上。

因此根据直线公理。

证明:已知PD⊥OA于D,PE⊥OB于E,且PD=PE,求证:OC平分∠AOB

证明:在Rt△OPD和Rt△OPE中:

OP=OP,PD=PE

∴Rt△OPD≌Rt△OPE(HL)

∴∠1=∠2

∴ OC平分∠AOB

方法一:1.以点O为圆心,以任意长为半径画弧,两弧交角AOB两边 于点M,N。

2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧, 两弧交于点P。

3.作射线OP。

射线OP即为所求。

证明:连接PM,PN在△POM和△PON中

∵OM=ON,PM=PN,PO=PO

∴△POM≌△PON(SSS)

∴∠POM=∠PON,即射线OP为角AOB的角平分线当然,角平分线的作法有很多种。

方法二:1.在两边OA、OB上分别截取OM、OC和ON、OD,使OM=ON,OC=OD;

2.连接CN与DM,相交于P;

3.作射线OP。

射线OP即为所求。

证明角平分线判定定理

1.在角的内部,如果一条射线的端点与角的顶点重合,且把一个角分成两个相等的角,那么这条射线就是这个角的平分线。

2.在角的内部,到一个角两边距离相等的点在这个角的平分线上。

3.两个角有一条公共边,且相等。

定理1:角平分线上的点到这个角两边的距离相等。

逆定理:在角的内部到一个角的两边距离相等的点在这个角的角平分线上。

定理2:三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。

逆定理:如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线。

证明角平分线判定性质

在三角形中的性质。

1.三角形的三条角平分线交于一点,且到各边的距离相等.这个点称为内心 (即以此点为圆心可以在三角形内部画一个内切圆)。

2.三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。

若AD是△ABC的角平分线,则 BD/DC=AB/AC 。

证明:作CE∥AD交BA延长线于E。

∵CE∥AD

∴△BDA∽△BCE

∴BA/BE=BD/BC

∴ BA/AE=BD/DC

∵CE∥AD

∴∠BAD=∠E,∠DAC=∠ACE

∵AD平分∠BAC

∴∠BAD=∠CAD

∴ ∠BAD=∠CAD=∠ACE=∠E

即∠ACE=∠E

∴ AE=AC

又∵BA/AE=BD/DC

∴BA/AC=BD/DC

证明角平分线判定方法相关文章

角平分线的定义是什么

人教版八年级数学上册第2课时角平分线的判定精选练习题

八年级数学上册第2课时角平分线的判定精选练习题

八年级数学三角形的证明知识点复习

高中数学证明题技巧

角平分线的教师教学反思

角平分线教学反思【五篇】

八年级数学上册学习步骤与教案全集

初二八年级数学上学期期中试卷

秋季学生八年级考试数学试卷

证明角平分线判定方法

从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线,三角形三条角平分线的交点叫做三角形的内心。下面小编给大家带来证明角平分线判定方法,希望能帮助到大家!证明角平分线
推荐度:
点击下载文档文档为doc格式

精选文章

  • 证明三角平分线判定方法
    证明三角平分线判定方法

    三角形其中一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。下面小编给大家带来证明三角平分线判定方法,希

  • 证明三角形重心判定定义
    证明三角形重心判定定义

    三角形的重心是三角形三条边的中线的交点,三角形的重心与三顶点的连线所构成的三个三角形面积相等。下面小编给大家带来证明三角形重心判定定义,

  • 证明菱形判定方法
    证明菱形判定方法

    四边都相等的四边形是菱形;两条对角线互相垂直的平行四边形是菱形;邻边相等的平行四边形是菱形;对角线互相垂直平分的,四边形是菱形;一条对角线平分

  • 证明三角形中位线判定定理
    证明三角形中位线判定定理

    三角形中位线定理是三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。下面小编给大家带来证明三角形中位线判定方法,希望能帮

1295182