小学六年级数学上册知识点归纳
小学六年级数学上册知识点归纳(实用)
数学某种意义上属于形式科学,而非自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。以下是小编准备的小学六年级数学上册知识点归纳,欢迎借鉴参考。
六年级数学知识点归纳
一、学习目标:
1.使学生能在方格纸上用数对确定位置;
2.使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算;
3.使学生理解倒数的意义,掌握求倒数的方法;
4.理解并掌握分数除法的计算方法,会进行分数除法计算;
5.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值;
6.使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。
7.使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。
二、学习难点:
1.能用数对表示物体的位置,正确区分列和行的顺序;
2.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法;
3.掌握求倒数的方法;
4.圆的周长和圆周率的意义,圆周长公式的推导过程;
5.百分数的意义,求一个数是另一个数的百分之几的应用题;
6.理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆;
7.理解比的意义。
小学六年级数学上册重要知识点归纳
第一单元:位置
1、用数对确定点的位置,如(3,5)表示:(第三列,第五行)
几列几行
↓↓
竖排叫列 横排叫行
(从左往右看)(从前往后看)
2、平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。
3、图形左、右平移:行不变图形上、下平移:列不变
第二单元分数乘法
一、分数乘法
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
例如:×5表示求5个的和是多少?
2、分数乘分数是求一个数的几分之几是多少。
例如:×表示求的是多少?
(二)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=ac+bc
二、分数乘法的解决问题
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、画线段图:
(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面
3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。
4、写数量关系式技巧:
(1)“的”相当于“×”“占”、“是”、“比”相当于“=”
(2)分率前是“的”:单位“1”的量×分率=分率对应量
(3)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量
三、倒数
1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:
(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1;0没有倒数。因为1×1=1;0乘任何数都得0,(分母不能为0)
4、对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是;
5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
六年级数学上册基础知识点总结
一、分数乘法
(一)分数乘法的意义和计算法则
1、分数乘整数的意义
2/11×3 表示: 求3个2/11是多少? 求2/11的3倍是多少?
2、分数乘整数的计算方法
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(能约分的要先约分再乘)
3、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。
4、分数乘分数的的计算方法
分数乘分数,用分子乘分子,分母乘分母。(能约分的要先约分再乘)
(二)求一个数的几分之几是多少的问题
1、找单位“1”的方法
(1)是谁的几分之几,就把谁看作单位“1”。
(2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。
注意: 找单位“1”在分率句里找,有分率的句子称为分率句。
分率不带单位,具体数量带有单位。
2、求一个数的几倍、几分之几是多少,用乘法计算。
15的3/5是多少? 15×3/5=9
3、已知单位“1”用乘法计算
单位“1”×分率=分率的对应量
注意:(1) 乘上什么样的分率就等于什么样的数量。
(2) 乘上谁占的分率就等于谁的数量。
(3) 是谁的几分之几,就用谁乘上几分之几。
4、已知A比B多(或少)几分之几,求A的解题方法
5、积与因数的大小关系
大于1的数,积大于A。
A(0除外)乘上
小于1的数,积小于A。