中考数学试卷考哪些内容
中考数学试卷考哪些内容
即将中考的你,对中考数学试卷架构了解吗?随着新课改不断推进,中考数学试卷注意了控制题量与阅读量,有效减轻了学生的考试负担;主客观试题的比例基本合理。接下来小编为大家整理了初三数学学习相关内容,一起来看看吧!
中考数学试卷考哪些内容
今年来中考试卷普遍趋向基础题。家长们更要注意关注孩子的基础知识了。现在中考临近,掌握中考试卷架构最为关键。
中考试卷设置了适量的开放性、阅读理解型试题,突出反映了知识的综合性、过程的探究性、结论的多样性等特征,符合学业考试命题的改革方向。
中考数学试题大多以课本习题或优秀的中考试题为素材,并做了实质性的改编,具有较好的导向性。试卷遵循课程标准的要求,关注基础、重视能力、面向全体,突出学业考的要求。大部分学生反映数学考试容易了。
试卷详析:为什么说今年数学容易了?
试题注重考查“四基”(基本知识、基本技能、基本思想方法、基本活动经验)和“四能”(计算能力、抽象思维能力、推理能力、创造能力)。它的真谛在:依据标准,用好教材,注重能力,重视过程,夯实基础,追求理解,突显通法,启迪思维。
1.回归数学学业考试要求,关注数学核心内容考查
中考数学试卷以知识与技能目标为基准,试卷能对“数与运算”、“方程与代数”、“图形与几何”“函数与分析”及“数据整理与概率统计”等领域进行系统的考查,较好地体现新课程的理念,坚持以学生为本,既关注所考查的课程目标的全面性,又关注对知识技能目标达成状况及数学思想方法、解决问题能力等课程目标达成状况的考查;既关注对结果性目标达成状况的考查,又关注对一些过程性目标达成状况的考查。有利于促进学生的数学思维、数学观念与数学素养的全面提高。
①注重对基础知识、技能的考查“数与运算”部分教学要求:知道由整数到有理数、实数的扩展思想;掌握有理数的运算法则和运算性质,懂得实数的基本运算和顺序关系;初步形成数量观念,胸中有“数”,能从数量方面及其变化规律的角度去认识事物;了解估算的意义并初步掌握估算的一些基本方法,会通过估算进行猜测或检验。
“方程与代数”部分教学要求:懂得解代数方程的基本原理,会解简单的代数方程;掌握简单的整式、分式和二次根式的基本运算和变形。
“图形与几何”部分教学要求:认识平面和空间的基本图形,理解基本的几何变换;会画简单的平面图形和一些空间图形,掌握简单平面图形的基本性质和有关距离、长度、角度、面积的计算方法;知道向量的概念,初步掌握向量的线性运算;知道空间直线与平面的平行、垂直等位置关系。
“函数与分析”部分教学要求:理解函数的意义;理解正比例函数、反比例函数、一次函数和二次函数的概念,会画他们的图像并掌握从图像中得到的一些基本性质。
“数据整理与概率统计”部分教学要求:了解概率与统计的意义;会收集、分析数据和从统计图表中获取信息;掌握常用统计图表的画法和基本统计量的计算方法,懂得根据统计结果作出合理推断;掌握简单的等可能事件概率的计算方法。
初中数学要求知道数学思想方法在进行数学思考和解决问题中的作用,通过有关数学知识和技能的学习,逐步领会字母表示数的思想、化归思想、方程思想、函数思想、数形结合思想、分类讨论思想、分解与组合思想等基本数学思想,掌握待定系数法、消元法、换元法、配方法等基本数学方法。数学基本技能是能按照一定的规则和步骤进行计算、画图和推理;初步形成数学中听、说、写等交流技能。
2.关注用数学解决问题能力的考查
数学课程标准要求初中数学教育要培养学生具有数学抽象、探索与应用等过程的经历和体验,初步掌握数学抽象以及探索、应用的基本方法,形成基本的数学能力,同时得到通用能力的良好训练。能从数学的角度和运用数学的思维方式去观察、分析现实生活中的事物,会提出问题,会运用所学知识和技能解决简单的问题。关注数学与现实的联系有助于培养学生应用意识与解决问题的能力,增进对数学的理解与认识。通过设置应用型、探究型、开放型、运动变化型、操作型等问题,多角度地考查学生解决问题的能力。同时注意考查方式的创新,更多地关注对知识本身意义的理解和在理解基础上的应用.。
3.关注数学学习能力的考查
在对已学知识掌握的深刻程度、学习与应用新知识能力、深入探究问题等关系到学生后续数学学习能力方面,试卷精心编制了区分度好、甄别功能强的试题。但难度得到了有效的控制,避免了新一届初三教师和学生瞄准压轴题进行攻关式教学和学习寻找理由。
初三数学上下册重难点
初三上册
二次函数、一元二次方程、旋转、圆和概率初步。
(1)二次函数:二次函数的图像和性质是中考数学命题的热点,难点。试题难度一般为难。常见选择,填空题分值为3-5分,综合题分值为10-12分。
考察内容:
①能通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
②能用数形结合,归纳等熟悉思想,根据二次函数的表达式(图像)确定二次的开口方向,对称轴和顶点的坐标,并获得更多信息。
③综合运用方程,几何图形,函数等知识点解决问题。
(2)一元二次方程:中考分值约为3-5分,题型主要以选择,填空为主,极少出现简答,难易度为易。
考察内容:
①方程及方程解的概念
②根据题意列一元一次方程
③解一元一次方程。
(3)旋转:图形的平移,旋转是中考题的新题型,热点题型,在试题比重,逐年上升。分值一般为5-8分,题型以填空,选择,作图为主,偶尔也会出现解答题。
考察内容:
①中心对称和中心对称图形的性质
②旋转和平移的性质。
(4)圆:圆和圆的有关性质与圆的有关计算是近几年各地中考命题的重点内容。题型以填空题,选择题和解答题为主,也有以阅读理解,条件开放,结论开放探索题作为新的题型,分值一般是6-12分,难易度为中。
考察内容:
①圆的有关性质的应用。垂径定理是重点。
② 直线和圆,圆和圆的位置关系的判定及应用。
③弧长,扇形面积,圆柱,圆锥的侧面积和全面积的计算
④圆与相似三角形,三角函数的综合运用以及有关的开放题,探索题。
(5)概率初步:分值一般3-6分,题型以选择,填空常见,更多以解答题目为主,难易度为中。
考察内容:
①简答事件的概率求解,图表法和数形图法
②利用概率解决实际,公平性问题等
③注意概率知识与方程相结合的综合性试题,选材贴近生活,越来越新。
初三下册
反比例函数、相似、锐角三角函数和投影与视图。
(1)反比例函数:反比例函数的图像和性质是中考数学命题的重要内容,试题新颖,题型灵活多样,所占分值约为3-8分,难易度属于难。
考察内容:
①会画反比例函数的图像,掌握基本性质。
②能根据条件确定反比例函数的表达式。
③能用反比例函数解决实际问题。
(2)相似:图形的形似是平面几何中极为重要的内容,是中考数学中的重点考察内容。一般分值约为6-12分,题型以选择,填空,解答综合题目为主,难易度属于难。
考察内容是:
①相似三角形的性质和判别方法,是重点。
②相似多边形的认识,黄金分割的应用。
③相似形与三角形,平行四边形的综合性题目是难点。
(3)锐角三角函数
(4)投影与视图:分值一般为3-6分,试题以填空,选择,解答的形式出现。
考察内容:
①常见几何体的三视图
②常见几何体的展开和折叠,展开和折叠是考试的热点,值得注意。
③利用相似结合平行投影和中心投影解决实际问题。
2
中考数学题型
(不同地区分值不同,可供参考)
选择题:3分一个,共14个,总分42分。
填空题:3分一个,共5个,总分15分。
解答题:共7题,总分63分。
3
中考重难点分析
(一)线段、角的计算与证明问题
中考中的简答题一般是分为两到三部分的。第一部分基本上都是简单题和中档题,目的在于考查基础。第二部分第二部分往往就是开始拉分的中难题了。
(二)列方程(组)解决应用问题
在中考中,方程是初中数学当中最重要的部分,所以也是中考必考内容。从近年来中考来看,结合时事热点考的比较多,所以还需要考生有一些实际生活经验。
(三)阅读理解问题
阅读理解问题是中考中的一个亮点。阅读理解往往是先给一个材料或介绍一个超纲的知识或给出一个针对某一种题目的解法,然后再给出条件出题。
(四)多种函数交叉综合问题
初中接触的函数主要有一次函数、二次函数和反比例函数。这类题目本身并不会太难,很少作为压轴题目出现,一般都是作为一道中档次题目出现来考查学生对函数的掌握。
(五)动态几何
从历年的中考来看,动态几何往往作为压轴的题目出现,得分率也是最低的。动态几何一般分为两类,一类是代数综合方面,在坐标系中,动直线一般是用多种函数交叉求解。另一类是几何综合题,在梯形、矩形和三角形中设立动点,考查学生的综合分析能力。
(六)图形位置关系
中学数学当中,图形位置关系主要包括点、线、三角形、矩形和正方形及它们之间的关系。在中考中会包括在函数、坐标系及几何题中,其中最重要的是三角形的各种问题。
中考数学试卷考哪些内容相关文章:
2.中考数学满分经验