人教版高一数学知识点总结及公式大全
人教版高一数学知识点总结及公式大全免费
学习数学时很多时候都需要运用到公式计算的问题,那么关于高一数学知识点和公式有哪些呢?以下是小编准备的一些人教版高一数学知识点总结及公式大全,仅供参考。
高一数学知识点整理
两个平面的位置关系:
(1)两个平面互相平行的定义:空间两平面没有公共点
(2)两个平面的位置关系:
两个平面平行——没有公共点;两个平面相交——有一条公共直线。
a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交
二面角
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
两平面垂直
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)
棱锥
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。
棱锥的性质:
(1)侧棱交于一点。侧面都是三角形
(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方
正棱锥
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
集合
集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。
集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。
集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。
集合与集合之间的关系
某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。
任何集合是它本身的子集。子集,真子集都具有传递性。(说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A B。
若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A属于B。中学教材课本里将符号下加了一个不等于符号,不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。)
高一数学常考的重点公式
1、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
AB-AC=CB.即“共同起点,指向被减”
a=(x,y)b=(x',y')则a-b=(x-x',y-y').
4、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的`∣λ∣倍。
数与向量的乘法满足下面的运算律
结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。
3、向量的的数量积
定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a·b=x·x'+y·y'。
向量的数量积的运算率
a·b=b·a(交换率);
(a+b)·c=a·c+b·c(分配率);
向量的数量积的性质
a·a=|a|的平方。
a⊥b〈=〉a·b=0。
|a·b|≤|a|·|b|。
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)?≠a?·b?。
2、向量的数量积不满足消去律,即:由a·b=a·c(a≠0),推不出b=c。
3、|a·b|≠|a|·|b|
4、由|a|=|b|,推不出a=b或a=-b。
怎么提高高一数学成绩
先看笔记,后做作业
有的同学感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,同学们对教师所讲的内容的理解,还没能达到教师所要求的层次。
因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。
尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
做题之后,加强反思
同学们一定要明确,现在正做着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思,总结一下自己的收获。
要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日久天长,构建起一个内容与方法的科学的网络系统。
俗话说:“有钱难买回头看”。我们认为,做完作业,回头细看,价值极大。这个回头看,是学习过程中很重要的一个环节。
要看看自己做对了没有;还有什么别的解法;题目处于知识体系中的什么位置;解法的本质什么;题目中的已知与所求能否互换,能否进行适当增删改进。有了以上五个回头看,学生的解题能力才能与日俱增。投入的时间虽少,效果却很大。