数学速算方法及分析方法
小学数学速算方法有哪些?小学数学是一些简单的数学知识方法,孩子在学习的时候只要掌握好知识点就可以了。下面小编给大家整理了关于数学速算方法及分析方法,希望对你有帮助!
数学速算方法
1数学速算的方法
小学数学是一些简单的数学知识方法,孩子在学习的时候只要掌握好知识点就可以了。对于新的知识接受,一定要让孩子在学校认真听讲,跟着老师的思路走,做好笔记,即使有不懂的地方也要及时的请教老师或者同学。
数学成绩决定孩子的理科综合能力,影响到理化生等多学科的成绩,小学阶段适时进行奥数训练,更有助于孩子初中理科成绩的提升。不要让我们的孩子进入初中后因为数学影响总排名,进而影响到中考成绩!掌握良好的速算技巧,是让孩子们在最短的时间内,学好速算的关键之处,所以,家长要善于引导孩子们发现和使用速算技巧,并且多多将这些技巧进行验证,让这些技巧好好为孩子服务。
2方法一:指算法
个位数比十位数大1乘以9的运算方法:前面因数的个位数是几,就把第几个手指弯回来,弯指左边有几个手指,则表示乘积的百位数是几。弯指读0,则表示乘积的十位数是0,弯指右边有几个手指,则表示乘积的个位数是几。口诀:个位是几弯回几,弯指左边是百位,弯指读0为十位,弯指右边是个位。例:34×9=306;
个位数比十位数大任意数乘以9的运算方法:凡是个位数比十位数大任意数乘以9时,仍是前面因数的个位数是几,将第几个手指弯回来,弯回来的手指不读数,作为乘积的十位数与个位数的分界线。前面因数的十位数是几,从左边起数过几个手指,则表示乘积的百位数就是几,弯指左边减去百位数,还剩几个手指,则表示乘积的十位数是几,弯指的右边有几个手指,则表示乘积的个位数是几。口诀:个位是几弯回几,原十位数为百位。左边减去百位数,剩余手指为十位。弯指作为分界线,弯指右边是个位。
3方法二:两位数加两位数的进位加法
口诀:加9要减1,加8要减2,加7要减3,加6要减4,加5要减5,加4要减6,加3要减7,加2要减8,加1要减9。(注:口决中的加几都是说个位上的数)例:26+38=64 解 :加8要减2,谁减2?26上的6减2。38里十位上的3要进4。(注:后一个两位数上的十位怎么进位,是1我进2,是2我进3,是3我进4,依次类推。那朝什么地方进位呢,进在第二个两位数上十位上。如本次是3我进4,就是这两个两位数里的2+4=6。)这里的26+38=64就是6-2=4写在个位上,是3进4加2就等于6写在十位上。再如42+29=71。就用加9要减1这句
口决,2-1=1,把1写在个位上,是2我进3,4+3=7,把7写在十位上即得71。两位数加两位数不进位的加法,就直接写得数就行,如25+34=59,个位加个位写在等号后的个位上5+4=9,十位加十位写在十位上即可2+3=5,即59。不必列竖式计算。本办法学会了百试百灵,比计算器还快。
4方法三:乘法速算方法
个位前的数字加1乘自己的积的末尾添上个位上的数字的积。如:56×54 5+1=6,6×5=30,在30的末尾添上个位上的数4与6的积24,得到3024,这样56×54=3024。再如:61×69 (6+1)×6=42,1×9=9,当个位上的数相乘的积是一位数时,仍要占两位,故在9的前面还应添一个0。故61×69=4209。练习:98×92 75×75 29×21;
十位相同,个位数字和不为10的两位数乘两位数的速算方法。用一个数加上另一个数的个位上的数,乘以由十位上的数字组成的整十数,再加上个位上两个数的积。例如:53×54=(53+4)×50+3×4=57×50+12=2850+12=2862练习:85×84 67×68 31×38
数学分析方法
1数学分析方法
对于考数学与应用数学专业研究生的学生来说,数学分析是必考科目,由于这门专业课内容多、难点也多,怎么在有限的时间内复习好这门课程、做好充分的准备取得好成绩呢?
2数学分析方法
首先要想一想自己到底对数学有没有兴趣,无论你是不是数学专业的,兴趣是最好的老师。此外要对自己要有信心,数学的本质就很抽象,但那也是人类的智慧。数学是崇高的。
首先学习数学分析。推荐看数学分析卓里奇写的书,可以去买一本看看。想轻松点的可以先看微积分学教程,菲赫金哥尔茨的书。书里题目多,证明严谨。不可急着看后面的,后面与前面可是有很多的联系。
在学数学分析同时可以附带看代数。先看张禾端的高等代数,基本没有难度。抽象代数看高等近世代数Rotman。还有本书代数学引论,俄罗斯柯斯特利金的,可以当作参考,这本书后面可能有点难度,里面涉及内容也比较多。
最重要的是坚持与思考,不可以一会看书的前面,一会儿看书的后面,该休息时还是要休息的,书里的题目都很好,大师写得能不好吗?一定要好好思考,也做点题目。建议一年半学习,然后有了这些基础,可以向数学的王国更高层出发了。
3数学分析方法
知识掌握过程中的三种不良习惯:忽略理解,死记硬背:认为只要记住公式、定理就万事大吉,而忽略了知识导出过程的理解,既造成提取应用知识的困难,更一次又一次地失去了对知识推导过程中孕含的思想方法的吸取。如三角公式“常记常忘,屡记不会”的根本原因就在于此,进而也谈不上用三角变换解题的自觉性了。
注重结论,轻视过程:数学命题的特点是条件和结论之间紧密相联的因果关系,不注意条件的掌握,常会导致错误的结果,甚至是正确的结果、错误的过程。如学习中看不出何时需讨论、如何讨论。原因之一在于数学知识的前提条件模糊(如指对数函数的单调性,不等式的性质,等比数列求和公式,最值定理等知识)
忽略及时复习和强化理解:“温故而知新”这一浅显的道理谁都懂,但在学习过程中持之以恒地应用者不多。由于在老师的精心诱导教诲下,每节课的内容好像都“懂”,因此也就舍不得花八至十分钟的“宝贵”时间回顾当天的旧知。殊不知课上的“懂”是师生共同参与努力的结果,要想自己“会”,必须有一个“内化”的过程,而这个过程必须从课内延伸到课外。切记从“懂”到“会”必须有一个自身“领悟”的过程,这是谁也无法取缔的过程。
忽视解题过程的规范化,只追求答案:数学解题的过程是一个化归与转化的过程,当然离不开规范严谨的推理与判断。解题中跳跃太大、乱写字母、徒手作图,如此态度对待稍难的问题,是难以产生正确答案的。我们说解题过程的规范不只是规范书写,更主要是规范“思考方法”,同学们应该学会不断调控自己的思维过程,力争使解题尽善尽美。
解决问题过程中的四种不良心态
缺乏对已学习过的典型题目及典型方法的积累:部分同学做了大量的习题,但收效甚微,效果不佳。究其原因,是迫于压力为完成任务而被动做题,缺乏必要的总结和积累。在积累的基础上增强“题性”、“题感”,逐步形成“模块”,不断吸取其中的智育营养,方可感悟出隐藏于模式中的数学思想方法。这就是从量的积累到质的变化的过程,只有靠“积累—消化—吸收”才能“升华”。
4数学分析方法
整理每章知识点:把书上每章、每节的内容先过一遍,然后根据自己的实际情况,标记下不懂的地方、老师上课强调过的重点和自己觉得重要的内容(包括一些重要的不等式、缩放技巧等等),整理成笔记。
整理课本习题:整理完知识点过后,就得回归到题上,每节的课后题以及每章最后的总复习题,花时间逐个做一遍(这个也看所考学校的难度和对自己的要求),同样,把不会的和容易出错的标记、并整理成笔记。
整理考研真题:整理知识点和课本题目都是为了考上报考院校的研究生,所以第三部分就是整理你想要考学校的这一章节的历年真题,这个至关重要,因为一切都是为了最后的考卷做准备。
当系统的复习各个章节后,把所有笔记整合到一起,接下来就是查漏补缺,不懂的可以向老师或同学请教,两本教材时刻得拿出来翻阅。
数学速算方法及分析方法相关文章:
数学速算方法及分析方法
上一篇:离散数学证明方法有哪些
下一篇:数学统计方法有哪些