高考数学满分技巧与二轮复习提分攻略
高考数学满分技巧与二轮复习提分攻略
常会听到很多同学给老师沟通时反映,在学习高中数学的时候都感觉比较吃力,有点跟不上老师的步伐。原因是高中数学相对于初中数学来说,难度层次更高,知识点,难点也更多,所以学习好高中数学,方法是关键。下面和大家一同交流分享一下学习高中数学的一些方法提供参考:
高考数学得满分,这套学习方法建议收藏
1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;
2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。当然,我们也要考虑结论的独立性;
3.注意题目中的小括号括起来的部分,那往往是解题的关键。
答题策略选择:先易后难、选择题解答
1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。
一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答。
2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。多写不会扣分,写了就可能得分。
答题思想方法:每个知识点具体策略
1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;
4.选择与填空中出现不等式的题目,优选特殊值法;
5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;
11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;
12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;
13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;
14.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;
15.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;
16.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;
17.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;
18.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;
19.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
每分必争:提升做题速度,懂得取舍
1.答题时间共120分,而你要答分数为150分的考卷,算一算就知道,每分钟应该解答1分多的题目,所以每1分钟的时间都是重要的。
试卷发到手中首先完成必要的检查(是否有印刷不清楚的地方)与填涂。之后剩下的时间就马上看试卷中可能使用到的公式,做到心中有数。用心算简单的题目,必要时动一动笔也不是不行(你是写名字或是写一个字母没有人去区分)。
2.在分数上也是每分必争。
你得到89分与得到90分,虽然只差1分,但是有本质的不同,一个是不合格一个是合格。
高考中,你得556分与得557分,虽然只差1分,但是它决定你是否可以上重本线,关系到你的一生。
所以,在答卷的时候要精益求精。
对选择题的每一个选择支进行评估,看与你选的相似的那个是不是更准确?填空题的范围书写是不是集合形式,是不是少或多了一个端点?是不是有一个解应该舍去而没舍?
解答题的步骤是不是按照公式、代数、结果的格式完成的,应用题是不是设、列、画(线性归化)、解、答?根据已知条件你还能联想到什么?把它写在考卷上,也许它就是你需要的关键的1分,为什么不去做呢?
3.答题的时间紧张是所有同学的感觉,想让它变成宽松的方法只有一个,那就是学会放弃,准确的判断把该放弃的放弃,就为你多得1分提供了前提。
4.冷静一下,表面是耽误了时间,其实是为自己赢得了机会,可能创造出奇迹。
在头脑混乱的时候,不防停下来,喝口水,深吸一口气,再慢慢呼出,就在呼出的同时,你就会得到灵感。
5.题目分析受挫,很可能是一个重要的已知条件被你忽略,所以重新读题,仔细读题才能有所发现,不能停留在某一固定的思维层面不变。
联想你做过的类似的题目的解题方法,把不熟悉的转化为你熟悉的也许就是成功。
6.高考只是人生的重要考试之一,其实人生是由每一分钟组成的。把握好人生的每一分钟才能真正把握人生。
高考数学二轮复习提分攻略
数学复习重点
高考数学是很多高三考生的一道坎。数学得高分,一步迈进名校门,数学失分多,则名次总分一落千丈。其中,二轮数学的复习更是至关重要。
在一轮复习中,老师带领考生们以大纲为指导,以教材为基础对知识点进行了全面复习。二轮复习的重点则侧重于提升解题技能,同时不断完善考生的数学知识体系,双轨并行,切实提分。
数学复习目标
想要获得二轮复习的胜利,考生们应该在这两个多月的时间里达成以下两点目标。
目标1
进一步加强对知识点的巩固、强化。
尤其要重点巩固常考知识点、重难知识点,注重对已经复习掌握过的知识的融会、贯通、透析、运用,把握每个知识点背后的潜在出题规律。
目标2
在此阶段,很关键的一个问题是如何将打磨过的知识点运用到做题中去。
近期完整的大考机会将增多,考生要抓住实战演习的每一次机会,掌握做题技巧,规范答题语言,以不变的知识点应万变的考试题。充分利用二轮复习的两个多月,把知识点和答题技巧完美掌握结合,助力高考得高分。
六大复习建议
01 函数与导数
近几年高考中, 函数类试题一般会出现2道选择题、2道填空题、1道解答题。
其中,选择题和填空题经常考的知识点更偏向反函数,函数的定义域和值域,函数的单调性、奇偶性、周期性,函数的图象、导数的概念和应用等,这些知识点要着重复习。
而在分值颇高的解答题中,通常会考查考生对于函数与导数、不等式运用等考点的掌握运用情况。掌握题目背后的知识点,建立自己的答题思路是非常重要的。
值得考生们注意的是,函数和导数的考查,经常会与其他类型的题目交叉出现,所以需要重视交叉考点问题的训练。
02 三角函数、平面向量和解三角形
三角函数是每年必考题,虽是重点但难度较小。哪怕是基础一般的同学,经过二轮复习的千锤百炼,都可以掌握这部分内容。所以,三角函数类题目争取一分都不要丢!
从题型来看,会覆盖选择题、填空题、解答题三大类型。大题会出现在二卷解答题的第一个,也证明此类型题目的难度比较小。
在三角函数的部分,高三考生需要熟练的知识点有不少。
(1)掌握三角变换的所有公式,理解公式的意义、应用场景、考查形式、使用方法等。
(2)熟悉三角变换常用的方法——化弦法、降幂法、角的变换法等。应用以上方法进行三角函数式的求值、化简、证明。
(3)掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题。
(4)熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质。同时,也要掌握这些函数图象的形状、特点。
(5)掌握三角函数不等式口诀:sinα上正下负;cosα右正左负;tanα奇正偶负。
03 数列
数列是高中数学的重要内容,每年高考都会考查等差数列、等比数列等重点知识点。考查题型常为填空题、选择题、解答题。小题考查的知识点大都比较基础,难度不大;解答题中有难度中等,最后一题的综合题目难度较大。
近年的高考试题中相关题目主要考查数列本身知识,等差数列与等比数列的概念、性质、通项公式及求和公式;数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合;数列的应用问题,其中#from 高考二轮复习:数学六大专题的提分攻略送给你来自学优网http://www.gkstk.com/ end#主要是以增长率问题为主。
考生应强化对这些知识点的掌握和应用,找到解题规律,争取看到等差、等比数列不再头痛丢分!
04 立体几何
立体几何的考查的题型也覆盖选择题目、填空题和解答题。通常情况下选择题目、填空题共三道, 解答题一道, 总分25-30分之间。
填空题和选择题主要考查立体几何的计算型问题,解答题着重考查建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
立体几何题目再解答和练习时应该这么做。
(1)审清题目。不要上来盲目就做题,文字加见图案不看清楚很容易懵圈了,之后再次读题就会思路不清、得分困难了。看题目中的已知条件、未知条件和所求结果是什么。
(2)看图分析。审题后就是静下心来先看清题目中是什么几何体。之后,分析几何体结构特征。看题目中的面面、线面、线线之间有哪些关系(平行、垂直、相等)。重点需要注意的是图形中的面面垂直、线面垂直,线线平行、线面平行等关系。
(3)整理思路找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。
(4)做题检验。以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。对所得的结论进行验证,对解题方法进行总结。
05 解析几何
解析几何是重点也是公认的难点,高考的解析结合涉及的知识点有直线及其方程、线性规划、圆及其方程、椭圆及其方程、抛物线及其方程、双曲线及其方程以及曲线与方程的关系及其图像等。高考试题中有时将以上的知识点进行交叉综合考查,让考试的难度更大了。
(1)基础知识很重要。对于基础知识,不仅一个知识点都要熟稔于心,还要有能力将这些零散的知识点串联起来。只有这样,才能形成属于自己的知识框架,才能更从容的应对考试。
(2)概念掌握要牢靠。明确直线及其方程部分的基本的概念,直线的斜率、倾斜角以及斜率和倾斜角之间的关系。熟记圆的标准方程和一般方程分别代表的含义。对于椭圆、抛物线、双曲线,考生要分别从其两个定义出发,明白焦点的来源、准线方程以及相关的焦距、顶点、突破离心率、通径的概念。每种圆锥曲线存在焦点在X轴和Y轴上的情况,要分别进行掌握。
(3)解题思路。考生应在二轮复习过程中学会解决不同问题的方法,并进行分门别类的及时总结,勤加复习,做到熟稔于心。
对于向量方法,最长用的地方就解决与斜率有关的问题;对于“设而不求”的方法,最常用到的地方就是两种不同的平面几何图形相交的情况下求弦长的问题;设点法,最长用到的地方就是两种曲线相切以及求最值得问题等。
06 概率与统计
概率统计类型的试题约为两题左右,难度为中等或中等偏易。同时,概率统计题常对课本原题进行改编,考查基础,贴近学生的生活总体,总体来说此类型试题的难度不大。
概率与统计试题频繁考查基本概念和基本公式,需要考生们进行熟练的掌握。比如:对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n次独立重复试验中恰发生k次的概率、离散型随机变量分布列和数学期望、方差、抽样方法等知识点。