学习啦 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学 > 高考数学大题与错题集的做题思路

高考数学大题与错题集的做题思路

时间: 慧良1230 分享

高考数学大题与错题集的做题思路

  掌握数学解题思想是解答数学题时不可缺少的一步,建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题目加以划分,最后几天集中复习。小编整理了相关知识点,快来学习学习吧!

  高考数学大题的做题思路

  六种解题技巧

  一、三角函数题

  注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

  二、数列题

  1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

  2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

  3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

  三、立体几何题

  1、证明线面位置关系,一般不需要去建系,更简单;

  2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;

  3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

  四、概率问题

  1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

  2、搞清是什么概率模型,套用哪个公式;

  3、记准均值、方差、标准差公式;

  4、求概率时,正难则反(根据p1+p2+...+pn=1);

  5、注意计数时利用列举、树图等基本方法;

  6、注意放回抽样,不放回抽样;

  7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

  8、注意条件概率公式;

  9、注意平均分组、不完全平均分组问题。

  五、圆锥曲线问题

  1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

  2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

  3、战术上整体思路要保7分,争9分,想12分。

  六、导数、极值、最值、不等式恒成立(或逆用求参)问题

  1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);

  2、注意最后一问有应用前面结论的意识;

  3、注意分论讨论的思想;

  4、不等式问题有构造函数的意识;

  5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);

  6、整体思路上保6分,争10分,想14分。

  五种数学答题思路

  在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约思考时间。以下总结高考数学五大解题思想,帮助同学们更好地提分

  一、函数与方程思想

  函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。

  二、 数形结合思想

  中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

  三、特殊与一般的思想

  用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用

  四、极限思想解题步骤

  极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果

  五、分类讨论思想

  同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。

  做数学错题集

  思路

  这里说的思路指的是你在解这道题时的全部思想活动,包括你对题目条件的分析、初步的想法、推导过程等等。尤其是卡了壳、出了错的部分,更要着重详细地记录下来。在此强烈建议大家不要忽视计算失误,有位同学直到高考前不久才通过总结错题找出了他的计算题老是丢分的原因:他一直都把1除以2算成了2!如果这个错误延续到高考,那该多可怕!

  一道题目的多种解法

  习题解答给出的标准解法一定是要抄录下来的,这是最基本的要求,也是起步较差的同学至少要做到的;如果基础还不错,那么对于自己做错的每一道题,都要争取得出更多的思路。之所以这样做,一方面是为了提升思维能力,另一方面也是契合应试考核的要求。

  以高考等选拔性测试为代表的应试体系考核,实质上就是检验你在一定时间内能展现多少出题者所要求展现的能力的一种手段。因此,寻求更简便、更符合你思维特点的解法是非常必要的。而精益求精的同学要做到的就是举一反三,也就是找出与这道错题题型或思路相似的其它1~3道题,将自己在研究错题时得到的经验和技巧在新题上加以运用验证。

  多复习总结

  记录完了上述两项内容,最后还得有个总结归纳的部分,简明扼要地表达出你的思维能力和出题者的要求还存在哪些不足,有哪些环节做得还不够好,以及你从这一系列对错题的研究中收获的经验和技巧。

  常见的几个问题回答:

  Q有同学可能会问:做的那么辛苦,如果做完又不看,那又有什么用?

  其实,以我和我的小伙伴们的亲身经历可以证明:如果你真的能以上述步骤认真地研究过一道错题,那么你就不用再担心自己会忘掉这道题的思路,因此也就无所谓看或者不看了;退一万步说,就算你最后还是忘却了抑或没太认真做,那还可以不时翻翻错题集中的反思部分嘛,效果一样好。

  Q这样整理一道错题下来做很耗时间,很累啊?

  整理一道错题确实很耗时间,按照上述的全部步骤去做错题集,在每道题上花的时间(包括研究+落实到错题本上)平均要45~90分钟。但考虑到我们只要抛弃拼命刷题的观念,那么除了上课写作业、吃饭睡觉,以及抽一点用来合理放松娱乐外,每天剩下的时间其实还是足够整理一些错题的。

  至于很累的方面就见仁见智了。有诸如用不同颜色的笔做错题集&题目太长或者图太难画或者时间太紧之类因此直接剪贴之类的小tips,这个自己可以用一些简便方法。

  Q

  有同学说错题集一定要工整/美貌/完全blablabla……是这样吗?

  这是最后要说也是最重要的,你一定要知道错题集是做给你自己看的,一切以你自己的便利为中心,怎么适合复习怎么来,怎么能记住知识点怎么来。所有人的意见都只是意见而已。如果是父母老师要求你的错题集一定要有什么格式,但格式并不适合你,你就好好地跟他们交流,他们可能会尊重你的意愿。毕竟谁用谁知道。

  最经典的错误:

  1

  不做错题集。

  错误的东西永远会错,最后考试一做就错。

  2

  错题集只有在考试前看。

  这完全没有理解为什么要用错题集!有人竟然会花一个月的时间刷那些你已经会的题,而从来不试图把这些不会的题弄懂,那学习到底在干嘛?刷成就?

  3

  错题集只加不减。

  如果你能做到天天看自己的错题集,很快就会发现有的东西会很快掌握,这时候就需要把这部分内容移除。错题集里面只留下那些你真心还没完全搞懂、没有完全记住的东西,保证你每一次翻开错题集都能再加深学习。


高考数学大题与错题集的做题思路相关文章:

1.高考高中数学答题思路总结

2.怎么做数学错题集?

3.2019高考数学大题的最佳解题技巧及解题思路,清华学长告诉你如何拿...

4.高考数学答题规范,学好数学,方法很关键

5.高中生数学期末考试有哪些复习技巧?教你使用这三种方法提高成绩

48995