学习啦 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学 > 高三数学不等式知识点

高三数学不等式知识点

时间: 倩愉0 分享

高三数学不等式知识点【整理】

高中知识点比较类似,考生都会感到情绪比较紧张,其感知、记忆、思维等心理过程都还未完全适应考场的紧张氛围,没有达到思维的最佳状态。下面是小编为大家整理的高三数学不等式知识点,希望对您有所帮助!

高三数学不等式知识点

不等式与不等式组的数轴穿根解法

数轴穿根:用根轴发解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,一次穿过这些零点,这大于零的不等式地接对应这曲线在x轴上放部分的实数x得起值集合,小于零的这相反。

做法:

1.把所有X前的系数都变成正的(不用是1,但是得是正的);

2.画数轴,在数轴上从小到大依次标出所有根;

3.从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含X的项是奇次幂就穿过,偶次幂跨过,后面有详细介绍);

4.注意看看题中不等号有没有等号,没有的话还要注意写结果时舍去使使不等式为0的根。

例如不等式:x2-3x+2≤0(最高次项系数一定要为正,不为正要化成正的)

⒈分解因式:(x-1)(x-2)≤0;

⒉找方程(x-1)(x-2)=0的根:x=1或x=2;

⒊画数轴,并把根所在的点标上去;

⒋注意了,这时候从最右边开始,从2的右上方引出一条曲线,经过点2,继续向左画,类似于抛物线,再经过点1,向点1的左上方无限延伸;

⒌看题求解,题中要求求≤0的解,那么只需要在数轴上看看哪一段在数轴及数轴以下即可,观察可以得到:1≤x≤2。

高次不等式也一样.比方说一个分解因式之后的不等式:

x(x+2)(x-1)(x-3)>0

一样先找方程x(x+2)(x-1)(x-3)=0的根

x=0,x=1,x=-2,x=3

在数轴上依次标出这些点.还是从最右边的一点3的右上方引出一条曲线,经过点3,在1、3之间类似于一个开口向上的抛物线,经过点1;继续向点1的左上方延伸,这条曲线在点0、1之间类似于一条开口向下的曲线,经过点0;继续向0的左下方延伸,在0、-2之间类似于一条开口向上的抛物线,经过点-2;继续向点-2的左上方无限延伸。

方程中要求的是>0,

只需要观察曲线在数轴上方的部分所取的x的范围就行了。

x<-2或0<x3。

⑴遇到根是分数或无理数和遇到整数时的处理方法是一样的,都是在数轴上把这个根的位置标出来;

⑵“奇过偶不过”中的“奇、偶”指的是分解因式后,某个因数的指数是奇数或者偶数;

比如对于不等式(X-2)2(X-3)>0

(X-2)的指数是2,是偶数,所以在数轴上画曲线时就不穿过2这个点,

而(X-3)的指数是1,是奇数,所以在数轴上画曲线时就要穿过3这个点。

高中数学不等式与不等式组的解法

1.一元一次不等式的解法

任何一个一元一次不等式经过变形后都可以化为ax>b或axb而言,当a>0时,其解集为(ab,+∞),当a<0时,其解集为(-∞,ba),当a=0时,b<0时,期解集为R,当a=0,b≥0时,其解集为空集。

例1:解关于x的不等式ax-2>b+2x

解:原不等式化为(a-2)x>b+2

①当a>2时,其解集为(b+2a-2,+∞)

②当a<2时,其解集为(-∞,b+2a-2)

③当a=2,b≥-2时,其解集为φ

④当a=2且b<-2时,其解集为R.

2.一元二次不等式的解法

任何一个一元二次不等式都可化为ax2+bx+c>0或ax2+bx+c<0(a>0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。

例2:解不等式ax2+4x+4>0(a>0)

解:△=16-16a

①当a>1时,△<0,其解集为R

②当a=1时,△=0,则x≠-2,故其解集(-∞,-2)∪(-2,+∞)

③当a<1时,△>0,其解集(-∞,-2-21-aa)∪(-2+21-aa,+∞)

3.不等式组的解法

将不等式中每个不等式求得解集,然后求交集即可.

例3:解不等式组m2+4m-5>0(1)

m 2+4m-12<0(2)

解:由①得m<-5或m>1

由②得-6,故原不等式组的解集为(-6,-5)∪(1,2)

4.分式不等式的解法

任何一个分式不等都可化为f(x)g(x)>0(≥0)或f(x)g(x)<0(≤0)的形式,然后讨论分子分母的符号,得两个不等式组,求得这两个不等式组的解集的并集便是原不等式的解集.

例4:解不等式x2-x-6-x2-1>2

解:原不等式化为:3x2-x-4-x2-1>0

它等价于(I)3x2-x-4>0-x2-1>0和(II)3x2-x-4<0-x2-1<0

解(I)得解集空集,解(II)得解集(-1,43).

故原不等式的解集为(-1,43).

5.含有绝对值不等式的解法

去绝对值号的主要依据是:根据绝对值的定义或性质,先将含有绝对值的不等式中的绝对值号去掉,化为不含绝对值的不等式,然后求出其解集即可。

(1)|x|>a(a>0)?x>a或x<-a.

(2)|x|0)?-a解:原不等式等价于3x x2-4≥1,①或3x x2-4≤-1②

解①得2 解②得-4≤x<-2或1≤x<2

故原不等式的解集为[-4,-2)∪(-2,-1]∪[1,2)∪(2,4].

例6:解不等式|x2-3x+2|>x2-1

解:原不等式等价于x2-3x+2>x2-1①或x2-3x+2<-x2+1②

解①得{x|x<1},解②得{x|12g(x)和|f(x)|a和|x| 例7:解不等式|x+1|+|x|<2

解:①当x≤-1时,原不等式变为-x-1-x<2 ∴-32 ②当-1 ∴-1 ③当x>0时,原不等式变为x+1+x<2.

∴解得0 综合①,②,③知,原不等式的解集为{x|-32 例8:解不等式|x2-3x+2|+|x2-4x+3|>2

解:①当x≤1时,原不等式变为x2-3x+2+x2-4x+3>2,此时解集为{x|x<12}.

②当12,此时解集为空集。

③当22,此时的解集是空集。

④当x>3时,原不等式化为x2-3x+2+x2-4x+3>2,此时的解集为{x|x>3}.

综合①②③④可知原不等式的解集为{x|x≤12}∪{x|x>3}.从以上两个例子可以看出,解含有两个或两个以上的绝对值的不等式,一般是先找出一些关键数(如例7的关键数是-1,0;例8中的关键数是1,2,3)这些关键数将实数划分为几个区间,在这些区间上,可以根据绝对值的意义去掉绝对值号,从而转化为不含绝对值的不等式,应当注意的是,在解这些不等式时,应该求出交集,最后综合各区间的解集写出答案。

6.无理不等式的解法

无理不等式f(x)>g(x)的解集为不等式组(I)f(x)≥[g(x)] 2f(x)≥0g(x)≥0和(II)f(x)≥0g(x)<0的解集的并集.

无理不等式f(x)0)的解集为不等式组f(x)≥0f(x)<[g(x)] 2g(x)>0的解集.

例9:解不等式:2x+5-x-1>0

解:原不等式化为:2x+5>x+1 由此得不等式组(I)2x+5≥0x+1<0或(II)2x+5≥0x+1≥02x+5>(x+1)2

解(I)得-52≤x<-1,解(II)得-1≤x<2

故原不等式的解集为[-52,2].

7.指数不等式的解法

根据指数函数的单调性来解不等式。

例10.解不等式:9x>(3)x+2

解:原不等式化为 3 2x>3x+22

∴2x>x+22即x>23

故原不等式解集为(23 ,+∞).

8.对数不等式的解法

根据对数函数的单调性来解不等式。

例11:解不等式:log12(x+1)(2-x)>0

解:原不等式化为log12(x+1)(2-x)>log121

∴ (x+1)(2-x)>0 (1)(x+1)(2-x)<1 (2)

解①得-1 解②得x<1-52 或x>1+52

故原不等式解集(-1,1-52)∪(1+52,2).

9.简单高次不等式的解法

简单高次不等式可以利用数轴标根法来解不等式.

例12:解不等式(x+1)(x 2-5x+4)<0

解:原不等式化为:(x+1)(x-1)(x-4)<0

如图,由数轴标根法可得原不等式解集为(-∞,-1)∪(1,4)

10.三角不等式的解法

根据三角函数的单调性,先求出在同一周期内的解集,然后写出通值。

例13:解不等式:sinx≤-12

解:sinx≤-12在[0,2π]内的解是:76 π≤x≤116π

故原不等式的解集为[2kπ+76 ,2kπ+116 ](k∈z)。

11.含有字母系数不等式的解法

在解不等式过程中,还常常遇到含有字母系数的一些不等式,此时,一定要注意字母系数进行讨论,以保证解题的完备性。

例14:解不等式2 3x-2x 解:原不等式变形为2 2x(2 2x-1) ∴(2 2x-1) (2 2x-a)<0

∴原不等式等价于2 2x-1>02 2x-a<0 或2 2x-1<02 2x-a>0

①当a≤0时,x<0;

②当0 ③当a=1时,无解

④当a>1时,0 解不等式的基础是解一元一次不等式,解一元二次不等式,解由一元一次不等式和一元二次不等式组成的不等式组。解其它各式各样的不等式(三角不等式除外)关键在于根据有关的定义,定理,性质转化这些不等式为上述三类不等式。在具体转化的过程中,特别应该注意每一步都应是同解变形。像无理不等式中的开偶次方时的被开方数及对数不等式中的真数等,在去根号和去对数符号时,一定要使被开方数非负,真数大于零。

高考前数学的复习方法

1、调整好状态,控制好自我。保持清醒。高考数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

2、提高解选择题的速度、填空题的准确度。

高考数学选择题是知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。

3、审题要慢,做题要快,下手要准。

题目本身就是高考数学题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。

找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。

高考数学学习策略

1、建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

2、针对自己的学习情况,采取一些具体的措施

(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

(2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

(3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

(4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

高考数学考前冲刺技巧

1.整理公式

数学的内容更加灵活一些,不需要去背诵,只是会应用就可以了。首先可以把,这段时间学习到的公式整理一下,对于知识点有大概的了解。考试也是针对这些知识点进行出题考查的,了解了这些公式,才能更加快速、精确地答题。

2.复习错题

这个是数学科目复习的重点,拿出自己的错题本,可以把自己错的题再做一遍,重新巩固自己所学的知识点。并且,达到能够解这一类型的题目,避免在期中考试中再犯相同的错误。错题本重在理解。

3.多做练习

数学考查的还是同学们运用的能力。平常多刷题(可以重复刷自己会做错的题,直到做对为止),能够提高自己的做题速度,并且可以见到更多不同题型的考查方法,能够真正地提高自己的数学成绩。“题海战术”虽然古老,但是一直很好用!

1965827