高三数学学习方法梳理
打盹会做梦,学习会圆梦。要想提高自身的学习成绩,则需要实际行动起来,不能三天打鱼,两天晒网,学习如同逆水行舟,不进则退。下面是小编给大家整理的一些高三数学学习方法梳理,希望对大家有所帮助。
高三年级数学学习方法
1、培养良好的学习习惯。
良好的学习习惯包括制定学习计划、课前预习、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
制定计划明确学习目的。合理的学习计划是推动我们主动学习和克服困难的内在动力。计划先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
课前预习是取得较好学习效果的基础。课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,上课更能专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。
及时复习是提高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。
独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”。
解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。
2、循序渐进,积极归因,防止急躁。
由于高一同学年龄较小,阅历有限,为数不少的同学容易急躁。有的同学贪多求快,囫囵吞枣,想靠几天“冲刺”一蹴而就。学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。让高一同学学会积极归因,树立自信心,如:取得一点成绩及时体会成功,强化学习能力;遇到挫折及时调整学习方法、策略,更加努力改变挫折,循序渐进,争取在高考成功。
3、注意研究学科特点,寻找高中数学学习方法。
数学学科担负着培养运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。其中运算能力的培养一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行,教学中进行一题多解思考,优化运算策略;逻辑思维能力是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高,使用归类、网联策略.
区别好几个概念:三段式推理、四种命题和充要条件的关系;空间想象能力对平面知识的扩充既要能钻进去,又要能跳出来,结合立体几何,体会图形、符号和文字之间的互化;运用所学知识分析问题、解决问题的能力,就是要重视应用题的转化训练,归类数学模型,体会数学语言。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理,方法因人而异,但学习的四个环节预习、上课、作业、复习和一个步骤归纳总结是少不了的。
高三数学学习方法整理
陆金中表示,以前学过的知识要全面掌握和理解,在心中建立知识网络。打好基础,首先须重视数学基本概念、基本定理(公式、法则)的复习,在理解上下功夫,整体把握数学知识。这部分内容的复习要做到不打开课本,能选择适当途径将它们回忆出,它们之间的脉络框图,能在自己大脑中勾画出来。如函数可以利用框图的形式由粗到细进行回忆。
概念要抓住关键及注意点,公式及法则要理解它们的来源,要理解公式法则中每一个字母的含义,即它们分别表示什么,这样才能正确使用公式。在平时学习时,不要满足于得到答案就行了,而其他的方法却不去研究,尤其课堂上,老师通过一个典型的例题介绍处理这种问题有哪些方法,可以从哪些不同的角度来思考问题。方法没有好坏之分,只是在解决具体的问题时才有优劣之分,更重要的是要关注通性、通法的掌握,而不是仅关注此问题特殊的、简单的方法。
高考数学复习七大知识点:
第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计。这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。
对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。
对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。
高三数学复习方法整理
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。
数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。
极限思想解题步骤
极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
分类讨论思想
我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。
拥有一个整体的高考文科数学解题思路,会对文科生答数学题有很大的帮助,可以更好的立于高考学生的第三轮复试,提高文科数学成绩。
高三数学学习方法梳理相关文章:
高三数学学习方法梳理
上一篇:高三数学学习方法策略
下一篇:高三数学基础学习方法技巧