学习啦 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学 >

高三数学课前预习的相关知识点分析

时间: 赞锐20 分享

学习中,在课前要认真预习,努力找出重点和难点,对课本中的练习要尝试进行解题,遇到自己不了解之处,要重点思考,以确定上课时听讲所要注重的主要问题。以下是小编给大家整理的高三数学课前预习的相关知识点分析,希望大家能够喜欢!

高三数学课前预习的相关知识点分析1

向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量没有除法,“向量AB/向量CD”是没有意义的。

高三数学课前预习的相关知识点分析2

①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.

⑶特殊棱锥的顶点在底面的射影位置:

①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.

②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.

③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.

④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.

⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.

⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.

⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

⑧每个四面体都有内切球,球心

是四面体各个二面角的平分面的交点,到各面的距离等于半径.

[注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.

简证:AB⊥CD,AC⊥BD

BC⊥AD.令得,已知则.

iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.

iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

简证:取AC中点,则平面90°易知EFGH为平行四边形

EFGH为长方形.若对角线等,则为正方形.

高三数学课前预习的相关知识点分析3

正弦、余弦典型例题

1.在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

2.已知α为锐角,且,则α的度数是()A.30°B.45°C.60°D.90°

3.在△ABC中,若,∠A,∠B为锐角,则∠C的度数是()A.75°B.90°C.105°D.120°

4.若∠A为锐角,且,则A=()A.15°B.30°C.45°D.60°

5.在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点,EF⊥BC,垂足为F,求sin∠EBF的值。

正弦、余弦解题诀窍

1、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理

2、已知三边,或两边及其夹角用余弦定理

3、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。

高三数学课前预习的相关知识点分析相关文章:

高三数学知识点总结及数学学习方法

数学课前预习需要掌握四大要点

高中数学复习的五大要点分析

数学课前预习要怎么进行

数学课前预习的六大技巧

数学课前预习六大技巧分享

高中数学知识点全总结

课前预习的方法与重要性

数学课前预习论文

如何进行数学课前预习

1071052