高考(必看)数学常考知识点整理
高考(必看)数学常考知识点整理归纳
高考数学的大题具有综合性、复杂性和创造性,做起来需要比较多的主观能动性和主观解答,每门学科的大题都是难点。下面是小编为大家整理的关于高考(必看)数学常考知识点整理,欢迎大家来阅读。
高考数学必考知识点归纳
三角函数。
注意归一公式、诱导公式的正确性。
数列题。
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的`式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、证明不等式时,有时构造函数,利用函数单调性很简单
立体几何题。
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
概率问题。
1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方差、标准差公式;
4、求概率时,正难则反(根据p1+p2+……+pn=1);
5、注意计数时利用列举、树图等基本方法;
6、注意放回抽样,不放回抽样;
正弦、余弦典型例题。
1、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为
2、已知α为锐角,且,则α的度数是()A、30°B、45°C、60°D、90°
3、在△ABC中,若,∠A,∠B为锐角,则∠C的度数是()A、75°B、90°C、105°D、120°
4、若∠A为锐角,且,则A=()A、15°B、30°C、45°D、60°
5、在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点,EF⊥BC,垂足为F,求sin∠EBF的值。
正弦、余弦解题诀窍。
1、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理。
2、已知三边,或两边及其夹角用余弦定理
3、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。
高考数学必考知识点
对数函数性质
定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}
值域:实数集R,显然对数函数无界。
定点:函数图像恒过定点(1,0)。
单调性:a>1时,在定义域上为单调增函数;
奇偶性:非奇非偶函数
周期性:不是周期函数
对称性:无
最值:无
零点:x=1
注意:负数和0没有对数。
两句经典话:底真同对数正,底真异对数负。解释如下:
也就是说:若y=logab (其中a>0,a≠1,b>0)
当a>1,b>1时,y=logab>0;
当01时,y=logab<0;
当a>1,0
高考数学常考知识点
集合与简单逻辑
1.易错点遗忘空集致误
错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
2.易错点忽视集合元素的三性致误
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。
3.易错点四种命题的结构不明致误
错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。
4.易错点充分必要条件颠倒致误
错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
5.易错点逻辑联结词理解不准致误
错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:
p∨q真<=>p真或q真,
p∨q假<=>p假且q假(概括为一真即真);
p∧q真<=>p真且q真,
p∧q假<=>p假或q假(概括为一假即假);
┐p真<=>p假,┐p假<=>p真(概括为一真一假)。