学习啦 > 学习方法 > 高中学习方法 > 高考辅导资料 > 2023高考数学复习备考策略

2023高考数学复习备考策略

时间: 梦荧0 分享

2023高考数学复习备考策略(通用)

在进行高考数学备考时,考生要经常进行习题训练,保证自己的理科做题思维和做题能力。以下是小编整理的一些2023高考数学复习备考策略,欢迎阅读参考。

2023高考数学复习备考策略

高考数学复习备考策略

1、高考数学考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

2、高考数学做题时可以训练自己的做题技巧,比如可以先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

再先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到数学试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、数学题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

高考数学复习方法

1、制订适合于自己的切实可行的复习计划是成功的前提,订计划的原则第一是适合自己,不跟别人攀比第二要与老师的复习计划一致。每个同学在制订计划时一般要把握好以下几个方面:

(1)重视基础,循序渐进。高考数学内容多以基础知识和基本技能为主(约占70-80%),所以每个同学从计划制订到实施过程都要特别注重基础。

(2)数学学习计划既要周密、细致,也要有整体性。把一百天分成合乎自己实际情况的段落,要订出具体时间表和每个时间段要达到的目标,当然还要符合自己的特点。在数学复习计划中要规定好自己在某一时间段里干什么(如早自习、晚自习、课下机动时间)、必须达到什么目标,尤其要明确晚自习每个时间段的目标、任务。

2、要认真听课,及时复习。这时候老师的授课大多是学科的精华和重要内容,认真听课是进行数学有成效复习的重要方面。听复习课要认真做到下面三点:一是查漏补缺、一丝不苟,对过去学习中不懂或不十分懂的内容彻底弄懂,做到单元过关、专题过关,不再欠帐,不能再留知识的死角和盲点。

二是把知识串成串,使数学知识系统化形成整体,便于记忆和运用。三是通过数学复习搞清知识前后纵向联系及与其他学科的横向联系,掌握它的规律,使认识上产生新的飞跃。

高考必考理科数学必背公式

一、正余弦定理

正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径

余弦定理:a2=b2+c2-2bc__cosA

二、诱导公式

一:设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)

二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

三:任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

六:π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinα

三、两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

四、倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

五、半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

小编推荐:高中必背88个数学公式

六、和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

七、某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3

1896943