学习啦 > 学习方法 > 高中学习方法 > 高考辅导资料 > 高考数学基础知识点归纳总结

高考数学基础知识点归纳总结

时间: 广辉4575 分享

高考数学基础知识点归纳总结_高三数学知识点

有很多的同学是非常的想知道,高三数学知识点有哪些,如何学好数学呢,那我们知道高考数学基础知识点归纳总结有哪些吗?下面是小编整理的高考数学基础知识点归纳总结,希望能够帮助到大家。

高考数学基础知识点归纳总结

复习重点

重点1:覆盖二十二个章节

(一)必修模块:

重点是集合与函数,基本初等函数Ⅰ(指、对、幂函数),基本初等函数Ⅱ(三角函数),三角恒等变换,解三角形,平面向量,不等式(指的是数学Ⅵ中的相应内容),数列,直线与方程,圆与方程,空间几何体、点、直线、平面之间的关系(指的是数学Ⅱ中的相应内容),算法初步,统计(指的是数学Ⅲ中的统计内容),概率。(共15章)

(二)必选模块:

(理科5章,文科3章)

(文理)圆锥曲线与方程,导数及其应用,推理与证明。

(理科)空间向量与立体几何,计数原理与统计概率。

(三)选修专题:(共3个专题)

1.几何证明,重点复习相似三角形和圆的内容。

2.坐标系与参数方程:

极坐标系:掌握极坐标与直角坐标系的相互转化,以及简单曲线极坐标方程,如:直线与圆。对于圆的极坐标方程需掌握以下几种:①圆心在极点上;②圆心在极轴上且过极点;③圆心在极轴的反向延长线上且过极点;④圆心在极垂线上过极点;⑤圆心在极垂线的方向延长线上,过极点。

参数方程中需要掌握的:①直线的参数方程;②圆的参数方程;③椭圆的参数方程。

3.不等式的重点内容:①不等式的基本性质,②证明不等式的基本方法,③用数学归纳法证明不等式。

重点2:突出九个重要方面

函数、三角函数、平面向量、数列、不等式、圆锥曲线与方程、立体几何与空间向量、统计与概率、导数及其应用。

(一)解析几何:

1.直线的倾斜角、斜率及直线方程的基本形式;

2.圆的方程:圆的标准方程,一般方程,以及两者之间的转化,通过转化确定圆的半径、圆心;

3.椭圆、双曲线、抛物线的定义、标准方程及几何性质;

4.直线与直线、直线与圆的位置关系;

5.直线与椭圆、直线与抛物线的位置关系。

【说明】文理科的大纲要求不同,需根据大纲要求进行区分复习。

1.文理科对直线的倾斜角、斜率及直线方程的基本形式、圆的方程的要求掌握的程度是一致的;

2.理科:理解、掌握椭圆、抛物线的知识,对双曲线的知识内容达到了解即可;

3.文科:理解、掌握椭圆的知识,对抛物线、双曲线的知识内容达到了解即可;

4.直线与直线、直线与圆的位置关系、直线与椭圆、直线与抛物线的位置关系是历年综合题中经常出现的两类问题。解析几何是历年来把关题之一,也是学生感觉比较困难的题,所以在复习的时候,要帮助学生把基本知识点落实到位,建立解题思路与解题策略。

(二)空间几何体与空间向量:

三视图;空间线线、线面、面面平行及垂直关系的判定和性质;柱、锥、台、球的性质及表面积、体积的计算.(文理科要求相同)空间向量的坐标运算;空间角和距离的计算;(仅有理科考)

【注意】空间向量的坐标运算;空间角和距离的计算,在解答题出现空间角的计算、距离的求解,都需要运用空间向量坐标系进行求解,因此在复习中应重点凸显。而空间线线、线面、面面平行及垂直关系的判定和性质是解决上述问题的基本,是复习的重中之重。

(三)统计与概率:

核心考点是抽样方法,用样本估计总体(频率分布直方图、折线图、茎叶图、平均数、中位数、众数、方差和标准差);古典概型和几何概型;【文理考察一致】

五类事件的概率(等可能性事件的概率、互斥事件有一个发生的概率、对立事件的概率、相互独立事件同时发生的概率、次独立重复试验中某事件恰好发生次的概率及二项分布)只有理科考察;条件概率(理科);离散型随机变量的分布列、期望值与方差(理科)。

【注意】方差是初中就已涉及,也属文科的考察点。

(四)导数:

1.导数的概念及其几何意义,特别是几何意义,文理必须都要掌握。

2.导数公式以及求导法则,文理科的要求一致。这一方面,对文科的要求加大,增加了对指数、对数、三角函数、分式函数等求导的要求。无论文科还是理科,都必须熟练掌握公式,并且能够灵活运用。

3.复合函数的求导法则(理科仅掌握一次多项式求导即可)。

4.导数与函数的单调性和极值;导数与函数的最大值和最小值;导数与不等式的证明。

5.导数与函数的零点;考察最多的5个方面。

6.定积分与微积分基本定理。理科考察,文科不作要求。

高三数学知识点有哪些

1、混淆命题的否定与否命题

命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。

2、忽视集合元素的三性致误

集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

3、判断函数奇偶性忽略定义域致误

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。

4、函数零点定理使用不当致误

如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。

5、函数的单调区间理解不准致误

在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

6、三角函数的单调性判断致误

对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。

7、向量夹角范围不清致误

解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。

8、忽视零向量致误

零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。

9、对数列的定义、性质理解错误

等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N_)是等差数列。

10、an与Sn关系不清致误

在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。

11、错位相减求和项处理不当致误

错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理。

12、不等式性质应用不当致误

在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误。

13、数列中的最值错误

数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。

14、不等式恒成立问题致误

解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法。通过最值产生结论。应注意恒成立与存在性问题的区别,如对任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立问题,但对存在x∈[a,b],使f(x)≤g(x)成立,则为存在性问题,即f(x)min≤g(x)max,应特别注意两函数中的最大值与最小值的关系。

15、忽视三视图中的实、虚线致误

三视图是根据正投影原理进行绘制,严格按照“长对正,高平齐,宽相等”的规则去画,若相邻两物体的表面相交,表面的交线是它们的原分界线,且分界线和可视轮廓线都用实线画出,不可见的轮廓线用虚线画出,这一点很容易疏忽。

16、面积体积计算转化不灵活致误

面积、体积的计算既需要学生有扎实的基础知识,又要用到一些重要的思想方法,是高考考查的重要题型.因此要熟练掌握以下几种常用的思想方法。(1)还台为锥的思想:这是处理台体时常用的思想方法。(2)割补法:求不规则图形面积或几何体体积时常用。(3)等积变换法:充分利用三棱锥的任意一个面都可作为底面的特点,灵活求解三棱锥的体积。(4)截面法:尤其是关于旋转体及与旋转体有关的组合问题,常画出轴截面进行分析求解。

17、忽视基本不等式应用条件致误

利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件。对形如y=ax+bx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到。

1882792