学习啦>学习方法>初中学习方法>初一学习方法>七年级数学>

初一数学知识点归纳重点

时间: 舒淇4599 分享

从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。下面小编为大家带来初一数学知识点归纳重点,希望大家喜欢!

初一数学知识点归纳重点

1、三角形的分类

三角形按边的关系分类如下:

三角形包括不等边三角形和等腰三角形

等腰三角形 包括底和腰不相等的等腰三角形和等边三角形

三角形按角的关系分类如下:

三角形包括 直角三角形(有一个角为直角的三角形)和斜三角形

斜三角形 包括 锐角三角形(三个角都是锐角的三角形)和 钝角三角形(有一个角为钝 角的三角形)

把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

2、三角形的三边关系定理及推论

(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

3、三角形的内角和定理及推论

三角形的内角和定理:三角形三个内角和等于180°。

推论:

①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

4、三角形的面积

三角形的面积=×底×高

全等三角形

1、全等三角形的概念

能够完全重合的两个三角形叫做全等三角形。。

2、三角形全等的判定

三角形全等的判定定理:

(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)

(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)

(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

直角三角形全等的判定:

对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

3、全等变换

只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。

全等变换包括一下三种:

(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。

(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。

等腰三角形

1、等腰三角形的性质

(1)等腰三角形的性质定理及推论:

定理:等腰三角形的两个底角相等(简称:等边对等角)

推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

2、三角形中的中位线

连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:

位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:

结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

初一数学知识点总结

一、一元一次不等式的解法:

一元一次不等式的解法与一元一次方程的解法类似,其步骤为:

1、去分母;

2、去括号;

3、移项;

4、合并同类项;

5、系数化为1

二、不等式的基本性质:

1、不等式的两边都加上(或减去)同一个整式,不等号的方向不变;

2、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;

3、不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

三、不等式的解:

能使不等式成立的未知数的值,叫做不等式的解。

四、不等式的解集:

一个含有未知数的不等式的所有解,组成这个不等式的解集。

五、解不等式的依据不等式的基本性质:

性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,

性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,

性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,

常见考法

(1)考查一元一次不等式的解法;

(2)考查不等式的性质。

误区提醒

忽略不等号变向问题。

初中数学重点知识点归纳

有理数乘法的运算律

1、乘法的交换律:ab=ba;

2、乘法的结合律:(ab)c=a(bc);

3、乘法的分配律:a(b+c)=ab+ac

单项式

只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的。

多项式

1、几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。

提高数学思维的方法

转化思维

转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、清晰。

创新思维

创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,得出与众不同的解

要培养质疑的习惯

家庭教育中,家长要经常引导孩子主动提问,学会质疑、反省,并逐步养成习惯。

在孩子放学回家后,让孩子回顾当天所学的知识:老师如何讲解的,同学是如何回答的?当孩子回答出来之后,接着追问:“为什么?”“你是怎样想的?”启发孩子讲出思维的过程并尽量让他自己作出评价。

有时,可以故意制造一些错误让孩子去发现、评价、思考。通过这样的训练,孩子会在思维上逐步形成独立见解,养成一种质疑的习惯。

初一数学知识点梳理

知识点、概念总结

1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。

2.不等式分类:不等式分为严格不等式与非严格不等式。

一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。

3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

5.不等式解集的表示方法:

(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3

(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

6.解不等式可遵循的一些同解原理

(1)不等式F(x)F(x)同解。

(2)如果不等式F(x)

(3)如果不等式F(x)0,那么不等式F(x)H(x)G(x)同解。

7.不等式的性质:

(1)如果x>y,那么yy;(对称性)

(2)如果x>y,y>z;那么x>z;(传递性)

(3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)

(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

(6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)

(7)如果x>y>0,m>n>0,那么xm>yn

(8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)

8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

9.解一元一次不等式的一般顺序:

(1)去分母(运用不等式性质2、3)

(2)去括号

(3)移项(运用不等式性质1)

(4)合并同类项

(5)将未知数的系数化为1(运用不等式性质2、3)

(6)有些时候需要在数轴上表示不等式的解集

10.一元一次不等式与一次函数的综合运用:

一般先求出函数表达式,再化简不等式求解。

11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成

了一个一元一次不等式组。

12.解一元一次不等式组的步骤:

(1)求出每个不等式的解集;

(2)求出每个不等式的解集的公共部分;(一般利用数轴)

(3)用代数符号语言来表示公共部分。(也可以说成是下结论)

13.解不等式的诀窍

(1)大于大于取大的(大大大);

例如:X>-1,X>2,不等式组的解集是X>2

(2)小于小于取小的(小小小);

例如:X<-4,X<-6,不等式组的解集是X<-6

(3)大于小于交叉取中间;

(4)无公共部分分开无解了;

14.解不等式组的口诀

(1)同大取大

例如,x>2,x>3,不等式组的解集是X>3

(2)同小取小

例如,x<2,x<3,不等式组的解集是X<2

(3)大小小大中间找

例如,x<2,x>1,不等式组的解集是1

(4)大大小小不用找

例如,x<2,x>3,不等式组无解

15.应用不等式组解决实际问题的步骤

(1)审清题意

(2)设未知数,根据所设未知数列出不等式组

(3)解不等式组

(4)由不等式组的解确立实际问题的解

(5)作答

16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。

初一数学知识点归纳重点相关文章

初一数学重要知识点归纳精选

初一数学知识点总结大全

七年级数学知识点总结

初一数学知识点归纳

初一数学的知识点梳理

初一数学知识点整理

初一数学的知识点归纳

初一数学知识点汇总

2022初一数学知识点总结

初一上册数学知识点总结大全

1569505