学习啦 > 学习方法 > 各学科学习方法 > 数学学习方法 > 如何提高数学的思维想象力

如何提高数学的思维想象力

时间: 慧珍791 分享

如何提高数学的思维想象力

  如何提高数学的思维想象力呢?对此,你有什么样的看法与见解呢?下面是学习啦小编整理的提高数学的思维想象力的方法以供大家阅读。

  提高数学的思维想象力的方法

  一、利用计算机绘制生动、形象的立体图形,使学生通过对直观图形透彻的观察,理解抽象的理论概念。

  在"多面体与旋转体的体积"这一章中,主要内容是柱、锥、台、球四种体积公式的推导,关键是对立体图形分析与理解。

  为了帮助学生在观察图形的基础上从感性认识向理性认识过渡,我们运用我校的计算机设备,与专职电脑编程人员密切合作,设计编制了图形软件来辅助教学。我们先根据讲解的需要设计出基本图形,再配合编程人员利用计算机先进的绘图系统进行绘制。在绘制过程中,我们利用画面的连续移动构成动画来体现切割、旋转、移动等动态动作。在讲解祖原理时,其主要内容为:两个等高的几何体,若被平行于底的平面截得的两个截面面积相等,则这两个几何体的体积相等。为了体现其中的关键点:两个几何体任意位置的平行截面相等,我们绘制了多幅不同位置截面的图形,并将截面涂上鲜明的色彩,按顺序编排好,连续播放时即形成了截面上下移动的动画效果,使学生形象地认识到不同位置的平行截面处处相等。又如在讲解锥体的体积公式推导时,由于要将三棱柱分割成三个三棱锥,图形变化较大,学生不易理解,因此我们将切割过程从头至尾展现给学生,在讲解时又将所要比较的两个三棱锥逐步恢复到切割前的状态,再分开。随着分开一复原一再分开的移动过程,学生们清楚自然地得出了所要推证的结论,同时也使得教师的讲解轻松而且顺理成章。有了锥的体积公式,我们又进一步依据大锥被平行于底的平面截去一小锥得到台体的思路,利用已推导出的锥体体积公式去推导台体的体积公式。我们利用动画效果使一平面进行移动呈现出动割大锥的过程,即让平面从大锥锥体某处以平行于底的方式插入,从另一侧抽出,留下切割的痕迹,进而将截得的小锥移到其它位置,将剩下的台体展现给学生。这一过程的加入,在学生的头脑中非常深刻地留下了台体与锥体的联系,可以说是过目不忘,收到了很好的效果。

  二、充分利用计算机绘图多功能的优越性,从多方位、多角度、多侧面描绘立体图形,解决平面立体图形与真实立体图形在视觉上的差异。

  我们在平面上绘制立体图形就要考虑到视觉差异的问题。比如,在纸上画一个立方体,它的某些面就必须呈平行四边形,才给人一种"体"的感觉,而实际上立方体的各个面均为正方形。为了不使学生把直观感觉当作概念,我们设计了一些旋转变形动作。在讲球的体积公式时,应用祖原理,找到了一个与半球体积相等的几何体,即与半球等高的圆柱中间挖去一个圆锥,证明的关键是推导出二者在等高处的平行截面面积相等。从图上看,这两个截面分别为椭圆和椭圆环,而实际形状应为圆和圆环。为了更形象地说明问题,我们将这两个截面设计为从原位置水平移动出来,再水平旋转90度使其成为竖直放置,这样两个截面就恢复了实际形状。同时我们又让环形截面中的小圆逐渐缩小至一点,使圆环变成与另一截面大小一样的圆,通过二者色彩的互换闪烁,使学生形象直观地感觉到是两个面积相等的截面,然后通过理论证明它们的面积相等。这样,从直观到理论两方面的配合,加深了学生的理解,使得这个难点顺利解决。

  三、利用多媒体辅助教学,引导学生通过观察图形主动积极地去寻找解题思路。

  现代教学论的思想核心是确认教师在教学中的主导地位的同时,认定学生在学习活动中的主体地位。因此教学的最终目的是启发和调动学生的主动性、积极性,让学生"会学".在多媒体教学的尝试中,为了打破传统教学中的"老师讲,学生听"的习惯,我们将课上的习题"从一个正方体中,如图那样截去四个三棱锥后,得到一个正三棱锥,求它的体积是正方体体积的几分之几?"根据题意设计成动画情景。一个正方体依次被切去了四个角,把切去的部分放到屏幕的四角,中间剩下一个三棱锥,求三棱锥的体积。学生根据画面的演示,立即想到剩余部分是由整体减去切掉的。有了思路后,再从画面中清晰地推导出每个角的体积是整体的1/6,进而得出所求体积为整体的1/3.这样,通过画面的演示,不需教师讲解,学生自己就可以找到求解方法,同时在无形中途立了间接求体积的概念。通过多媒体教学,我们发现它具有不可比拟的优越性。首先,多媒体教学使课上教学省力;它能直观、生动、形象地进行教学,有利于引起学生的注意力,充分调动学生的积极性,并且使教师的板书量大大减少。其次,多媒体教学增大了课容量,加强了知识间的连贯性。由于多媒体教学直观、生动、形象地突出了教学重点,浅化了教学难点,使学生理解知识的进度加强!

  有关 高一数学学习方法的推荐

  一、计算能力。高中涉及到更多的内容,而计算是一项基本技能,对于初中时候的有理数的运算、二次根式的运算、实数的运算、整式和分式运算,代数式的变形等方面如果还存在问题,应该把部分再好好复习巩固一下。若计算频频出现问题,会成为高中学习的一个巨大的绊脚石。

  二、反思总结。很多同学进入高中后都会在学法上遇到很大的困扰。因为高中知识多,授课时间短,难度大,所以初中时候的一些学习方法在高中就不太适用了。对于高中的知识,不能认为“做题多了自然就会了”,因为到了高中没有那么多时间来做题,因此一定要找到一种更有效地学习方法,那就是要在每次学习过后进行总结和反思。总结知识点之间的联系和区别,反思一下知识更深层的本质。三、预习高一的知识。新课程标准的高一第一学期一般是讲必修1和必修4两本。目前高中采取模块教学,每个学期2个模块。

  必修1的主要内容是三部分:

  集合:数学中最基础,最通用的数学语言。贯穿整个高中以及现代数学都是以集合语言为基础的。一定要学明白了。

  函数:通过初中对具体函数的学习,在其基础上研究任意函数研究其性质,如单调性,奇偶性,对称性,周期性等。这一部分相对有一定的难度,而且与初中的联系比较紧。基本初等函数:指数和对数的运算以及利用前面学到的函数性质研究指数函数,对数函数和幂函数。这部分知识有新的计算,并且应用前面的函数性质学习新的函数。

  必修4的主要内容也分为三部分:

  三角函数:对于初中的角的概念进行扩充,涉及到三角函数的运算以及三角函数的性质。

  平面向量:这是数学里面一种新的常用的工具,通过向量的方法可以方便的解决很多三角函数的问题。这种方法与平面直角坐标系的联系比较多,但与函数有所不同,应注意区别与联系。

  三角恒等变换:这部分主要是三角的运算,属于公式很多,运算量也比较大的内容。统观上述高一第一学期的内容可见知识非常多,而且这些知识在高考中的比重也比较大,因此若在高一一开始不能学好,对于后面的学习是会有一定影响的。因此,要考虑到初高中知识的差异,对自己的学法进行改进,最后要适当的预习一下新高一的内容,以期很快的适应高中的数学学习。

852809