七年级数学上期中试卷及答案(2)
11.初一(1)班原有学生40人,其中有男生a人,开学几天后又转来2名女生,则现在女生占全班的比例为 .
考点: 列代数式.
分析: 现在的女生人数为40﹣a+2=42﹣a人,全班人数为40+2=42人,根据分数除法的意义列式求得答案即可.
解答: 解:现在的女生人数为40﹣a+2=42﹣a人,全班人数为40+2=42人,
则现在女生占全班的比例为 .
故答案为: .
点评: 此题考查列代数式,找出前后数量的变化是解决问题的关键.
12.请你做评委:在一堂数学活动课上,在同一合作学习小组的小明、小亮、小丁、小彭对刚学过的知识发表了自己的一些感受:
①小明说:“到表示﹣1的点距离不大于2的所有的点有5个.”
②小亮说:“当m=3时,代数式3x﹣y﹣mx+2中不含x项”
③小丁说:“若|a|=3,|b|=2,则a+b的值为5或1.”
④小彭说:“多项式2x3y﹣x2y2+25的次数是5是一次三项式.”
你觉得他们的说法正确的是 ② (填序号)
考点: 多项式;数轴;绝对值.
分析: 根据多项式、数轴、绝对值的概念求解.
解答: 解:①到表示﹣1的点距离不大于2的所有的点有无数个,原说法错误;
②当m=3时,代数式3x﹣y﹣mx+2=﹣y+2,不含x项,该说法正确;
③若|a|=3,|b|=2,则a+b的值为±5或±1,原说法错误;
④多项式2x3y﹣x2y2+25是四次三项式,原说法错误.
正确的为②.
故答案为:②.
点评: 本题考查了多项式、数轴、绝对值的知识,掌握各知识点的概念是解答本题的关键.
13.某商场购进一批衣服,进价为每套240元,若每套以280元的价格销售,每天可销售200套.经调查发现如果每套比原售价降低5元销售,则每天可多销售10套.现若每套降低x元,则每天可获的总利润 ﹣2x2﹣120x+8000 元.(用含x的代数式表示)(总利润=销售总额﹣总进价)
考点: 列代数式.
分析: 依据利润=每件的获利×件数,列出式子即可解决.
解答: 解:(280﹣240﹣x)(200+ ×10)
=(40﹣x)(200+2x)
=﹣2x2﹣120x+8000(元).
故答案为:﹣2x2﹣120x+8000.
点评: 此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.
16.计算:
(1)24+(﹣14)+(﹣16)+8;
(2) ;
(3) ;
(4)﹣14﹣(﹣5 )× .
考点: 有理数的混合运算.
分析: (1)先化简再计算即可;
(2)将除法变为乘法,再约分计算即可求解;
(3)直接运用乘法的分配律计算;
(4)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.
解答: 解:(1)24+(﹣14)+(﹣16)+8
=24﹣14﹣16+8
=32﹣30
=2;
(2)
=﹣ × ×
=﹣ ;
(3)
= × + ×6﹣ ×0.6
=1+5﹣0.5
=5.5;
(4)﹣14﹣(﹣5 )×
=﹣1+2﹣8÷|﹣9+1|
=﹣1+2﹣8÷8
=﹣1+2﹣1
=0.
点评: 本题考查的是有理数的运算能力.注意:
(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;
(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.
17.化简:
(1)5a﹣4b﹣3a+b;
(2) .
考点: 整式的加减.
分析: (1)直接合并同类项即可;
(2)先去括号,再合并同类项即可.
解答: 解:(1)原式=(5﹣3)a+(1﹣4)b
=2a﹣3b;
(2)原式=x2+ x﹣ ﹣2x+2x2﹣2
=3x2﹣ x﹣ .
点评: 本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.
18.解方程:
(1)3x﹣4(2x+5)=x+4
(2)2﹣ =x﹣ .
考点: 解一元一次方程.
专题: 计算题.
分析: (1)方程去括号,移项合并,将x系数化为1,即可求出解;
(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.
解答: 解:(1)方程去括号得:3x﹣8x﹣20=x+4,
移项合并得:﹣6x=24,
解得:x=﹣4;
(2)方程去分母得:12﹣(x+5)=6x﹣2(x﹣1),
去 括号得:12﹣x﹣5=6x﹣2x+2,
移项合并得:5x=5,
解得:x=1.
点评: 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.
19.已知多项式A、B、C满足:A+B﹣C=﹣4(x2﹣t﹣1),且B=﹣ .
(1)求多项式A;
(2)若t=﹣ ,求A的值.
考点: 整式的加减;代数式求值.
分析: (1)根据已知得出A=C﹣B﹣4(x2﹣t+1),把B、C的值代入,去括号后合并同类项即可;
(2)把t的值代入求出即可.
解答: 解:(1)∵A+B﹣C=﹣4(x2﹣t﹣1),且B=﹣ ,
∴A=C﹣B﹣4(x2﹣t+1)
=2(x2﹣t﹣1)+ (x2﹣t﹣1)﹣ 4(x2﹣t﹣1)
=2x2﹣2t﹣2+ x2﹣ t﹣ ﹣4x2+4t+4
=﹣ x2+ t+ ;
(2)当t=﹣ 时,A=﹣ x2+ ×(﹣ )+ =﹣ x2+1.
点评: 本题考查了整式的混合运算的应用,解此题的关键是求出多项式A的值,难度一般.
21.魔术师为大家表演魔术.他请观众想一个数,然后将这个数按以下步骤操作:
魔术师立刻说出观众想的那个数.
(1)如果小明想的数是﹣1,那么他告诉魔术师的结果应该是 4 ;
(2)如果小聪想了一个数并告诉魔术师结果为93,那么魔术师立刻说出小聪想的那个数是 88 ;
(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙.
考点: 一元一次方程的应用.
专题:创新题型.
分析: (1)利用已知条件,这个数按步骤操作,直接代入即可;
(2)假设这个数,根据运算步骤,求出结果等于93,得出一元一次方程,即可求出;
(3)结合(2)中方程,关键是发现运算步骤的规律.
解答: 解:(1)(﹣1×3﹣6)÷3+7=4;
故填:4;
(2)设这个数为x,
(3x﹣6)÷3+7=93;
解得:x=88;
(3)设观众想的数为a. .
因此,魔术师只要将最终结果减去5,就能得到观众想的数了.
点评: 此题主要考查了数的运算,以及运算步骤的规律性,题目比较新颖.
22.某展览馆对学生参观实行优惠,个人票每张6元,团体票每10人45元.
(1)如果参观的学生人数为37人,至少应付多少元;
(2)如果参观的学生人数为48人,至少应付多少元;
(3)如果参观的学生人数是一个两位数,十位数字为a,个位数字为b,用含a、b的代数式表示至少应付多少元?
考点: 列代数式;有理数的混合运算.
专题: 分类讨论.
分析: (1)若参观的学生人数36人,则应买3张团体票,买6张个人票;
(2)参观的学生人数为48人,分两种情况进行计算,买5张团体票应付225元,买4张团体票,8张个人票应付228元,故至少应付225元;
(3 )应分类讨论,当0≤b≤7,且为整数时,至少应付(45a+6b)元;当8≤b≤9,且为整数时,至少应付(45a+45)元.
解答: 解:(1)若参观的学生人数36人,则应付费用:3×45+6×6=171(元)
(2)参观的学生人数为48人,如买4张团体,8张个人票,应付:4×45+6×8=228(元),
若买5张团体票,应付:5×45=225<228,∴至少付225元.
(3)当0≤b≤7,且为整数时,至少应付(45a+6b)元;
当8≤b≤9,且为整数时,至少应付(45a+45)元.
点评: 此题考查了根据实际问题列代数式,把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键是读懂题意,正确表达,作出最优选择.
24.甲乙两辆车在一个公路上匀速行驶,为了确定汽车的位置,我们用数轴表示这条公路,并规定向右为正方向,原点o为零千米路标,并作如下约定:位置为正,表示汽车位于零千米的右侧,位置为负,表示汽车位于零千米的左侧,位置为零,表示汽车位于零千米处.
(1)根据题意,填写下列表格;
时间 0 5 7 x
甲车位置 190 ﹣10 ﹣90 190﹣4x
乙 车位置 ﹣80 170 270 ﹣80+50x
(2)甲乙两车能否相遇?如果相遇,求相遇时的时刻以及在公路上的位置,如果不能相遇,请说明理由;
(3)甲乙两车能否相距135km?如果能,求相距135km的时刻和位置;如不能,请说明理由.
考点: 一元一次方程的应用.
分析: (1)根据速度=路程÷时间,可求出甲乙两车的速度,从而可填写表格;
(2)相遇,则两车的位置相等,得出方程,求解即可;
(3)相距135千米,需要分两种情况, ①乙车在左,甲车在右,②乙车在右,甲车在左,分别得出方程求解即可.
解答: 解:(1)填表如下:
时间(h) 0 5 7 x
甲车位置(km) 190 ﹣10 ﹣90 190﹣40x
乙车位置(km) ﹣80 170 270 ﹣80+50x
(2)由题意得:190﹣40x=﹣80+50x,
解得:x=3,
190﹣40×3=70,
答:相遇时刻为3小时,且位于零千米右侧70km处;
(3)①190﹣40x+135=﹣80+50x,
解得:x=4.5,
190﹣40×4.5=10,﹣80+50×4.5=145,
②190﹣40x=﹣80+50x+135,
解得x=1.5,
190﹣40×1.5=130,
﹣80+50×1.5=﹣5.
答:相距180km的时刻为4.5小时或1.5小时,甲乙两车分别位于零千米左侧10km、右侧145km处,或者甲乙两车分别位于零千米右侧130km、左侧5km处.
点评: 本题考查了一元一次方程的应用,解答本题的关键是表示出x小时时,甲乙两车的位置,注意利用方程思想的求解,有一定难度.
猜你喜欢: