学习啦 > 学习方法 > 各学科学习方法 > 数学学习方法 > 2018年八年级上学期数学练习题

2018年八年级上学期数学练习题

时间: 丽仪1102 分享

2018年八年级上学期数学练习题

  2018年的八年级即将结束,趁现在还有时间,多做一些数学的纤细题吧。下面由学习啦小编为大家提供关于2018年八年级上学期数学练习题,希望对大家有帮助!

  2018年八年级上学期数学练习填空题

  (每小题4分,共20分)

  21.已知:m、n为两个连续的整数,且m<

  22.有长度为9cm,12cm,15cm,36cm,39cm的五根木棒,从中任取三根可搭成(首尾连接)直角三角形的概率为 ▲ .

  23. 关于x,y的二元一次方程组 中, 方程组的解中的 或 相等,则 的值为 ▲ .

  24.如图,直线y=x+6与x轴、y轴分别交于点A和点B,x轴上有一点C(﹣4,0),点P为直线一动点,当PC+PO值最小时点P的坐标为 ▲ .

  25.如图,在平面直角坐标系中,函数y=2x和y =﹣x的图象分别为直线 , ,过点(1,0)作x轴的垂线交 于点A1,过点A1作y轴的垂线交 于点A2,过点A2作x轴的垂线交 于点A3,过点A3作y轴的垂线交 于点A4,…依次进行下去,则点A2015的坐标为 ▲ .

  2018年八年级上学期数学练习解答题

  二.(共8分)

  26.甲、乙两人在某标准游泳池相邻泳道进行100米自由泳训练,如图是他们各自离出发点的距离y(米)与他们出发的时间x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长50米,100米自由泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计).

  (1)直接写出点A坐标,并求出线段OC的解析式;

  (2)他们何时相遇?相遇时距离出发点多远?

  (3)若甲、乙两人在各自游完50米后,返回时的速度相等;则快者到达终点时领先慢者多少米?

  三、(共10分)

  27. 已知 中, .点 从点 出发沿线段 移动,同时点 从点 出发沿线段 的延长线移动,点 、 移动的速度相同, 与直线 相交于点 .

  (1)如图①,当点 为 的中点时,求 的长;

  (2)如图②,过点 作直线 的垂线,垂足为 ,当点 、 在移动的过程中,设 , 是否为常数?若是请求出 的值,若不是请说明理由.

  (3)如图③,E为BC的中点,直线CH垂直于直线AD,垂足为点H,交AE的延长线于点M;直线BF垂直于直线AD,垂足为F;找出图中与BD相等的线段,并证明.

  四、(共12分)

  28.如图①,等腰直角三角形 的顶点 的坐标为 , 的坐标为 ,直角顶点 在第四象限,线段AC与x轴交于点D.将线段DC绕点D逆时针旋转90°至DE.

  (1)直接写出点B、D、E的坐标并求出直线DE的解析式.

  (2)如图②,点P以每秒1个单位的速度沿线段AC从点A运动到点C的过程中,过点P作与x轴平行的直线PG,交直线DE于点G,求与△DPG的面积S与运动时间t的函数关系式,并求出自变量t的取值范围.

  (3)如图③,设点F为直线DE上的点,连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速 度运动到F,再沿线段FE以每秒 个单位的速度运动到E后停止.当点F的坐标是多少时,是否存在点M在整个运动过程中用时最少?若存在,请求出点F的坐标;若不存在,请说明理由.

  2018年八年级上学期数学练习答案

  一、填空题(每小题4分,共20分)

  21. ; 22. ; 23. 2或 ;24. ;25.

  二、 (本题满分8分)

  26.解:(1)由图得点A(30,50),C(40,50),………1分

  设线段OC的解析式为:y1=k1x,

  把点C(40,50)代入得, ,

  ∴线段OC的解析式为:y1= (0≤x≤40);………2分

  (2)设线段AB的解析式为y2=k2x+b,

  把点A(30,50)、点B(60,0)代入可知:

  解得, ,

  ∴线段AB的解析式为y2= ,(30≤x≤60); ………4分

  解方程组 ,

  解得, ,∴线段OC与线段AB的交点为( , ),………6分

  即出发 秒后相遇,相遇时距离出发点 米;

  (3)∵甲乙两人在各自游完50米后,在返程中的距离保持不变,

  把x=30代入y1= ,得y1= 米,

  把x=40代入y2= ,得y2= 米,

  ∴快者到达终点时, 领先慢者 米. ………8分

  三、(本题满分10分)

  27解:(1)如图,过P点作PF∥AC交BC于F,

  ∵点P和点Q同时出发,且速度相同,

  ∴BP=CQ, ………1分

  ∵PF∥AQ,

  ∴∠PFB=∠ACB,∠DPF=∠CQD,

  又∵AB=AC,

  ∴∠B=∠ACB,

  ∴∠B=∠PFB,

  ∴BP=PF,

  ∴PF=CQ,又∠PDF=∠QDC,

  ∴△PFD≌△QCD, ………3分

  ∴DF=CD= CF ,

  又因P是AB的中点,PF∥AQ,

  ∴F是BC的中点,即FC= BC=6,………4分

  ∴CD= CF=3;

  (2) 为定值.

  如图②,点P在线段AB上,

  过点P作PF∥AC交BC于F,

  易知△PBF为等腰三角形,

  ∵PE⊥BF

  ∴BE= BF

  ∵易得△PFD≌△QCD ………5分

  ∴CD=

  ∴ ………6分

  (3)BD=AM ………7分

  证明:∵

  ∴

  ∴

  ∵E为BC的中点

  ∴

  ∴ ,

  ∴ ,

  ∵AH⊥CM

  ∴

  ∵

  ∴

  ∴ ≌ (ASA) ………9分

  ∴

  ∴

  即: ………10分

  四、(本题满分12分)

  解:(1)由题意得:B(4,-1),D(1,0).E(-2,3) ………3分(一个点1分)

  设直线DE为

  把D(1,0).E(-2,3)代入得

  解之得:

  ∴直线DE为: (用其它方法求出DE解析式也得满分)………4分

  (2)在Rt△ABC中,由

  ,

  由

  同理可得:

  由题意可知: ,∠DPG=∠DAB=45°

  ∴△DPG为等腰直角三角形

  ………5分

  ①当 时 ∴

  ………6分

  ②当 时,过G作GM⊥AC于M

  易得

  ………8分

  综上: ( )

  (3) 如图③,易得∠EDO =45°.

  过点E作EK∥x轴交 轴于H,则∠KEF=∠EDO=45°.

  过点F作FG⊥EK于点G,则FG=EG= .………9分

  由题意,动点M运动的路径为折线AF+EF,运动时间:

  ,

  ∴ ,即运动时间等于折线AF+FG的长度 .………10分

  由垂线段最短可知,折线AF+FG的长度的最小值为EK与线段AB之间的垂线段.

  则t最小=AH,AH与 轴的交点,即为所求之F点.………11分

  ∵直线DE解析式为:

  ∴F(0,1). ………12分

  综上所述,当点F(0,1)坐标为时,点M在整个运动过程中用时最少.


猜你喜欢:

1.2017八年级上册数学复习题

2.八年级上册数学学习方法报

3.八年级上册数学义务教育教科书答案

4.八年级上册数学经典题型

5.人教版八年级数学上册课本答案

3709653