学习啦 > 学习方法 > 各学科学习方法 > 数学学习方法 > 2018泰州中考数学试卷及答案解析

2018泰州中考数学试卷及答案解析

时间: 丽仪1102 分享

2018泰州中考数学试卷及答案解析

  2018年初三的同学们,中考已经离你们不远了,数学试卷别放着不做,要对抓紧时间复习数学。下面由学习啦小编为大家提供关于2018泰州中考数学试卷及答案解析,希望对大家有帮助!

  2018泰州中考数学试卷一、选择题

  本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.

  1.2的算术平方根是(  )

  A. B. C. D.2

  【答案】B.

  试题分析:一个数正的平方根叫这个数的算术平方根,根据算术平方根的定义可得2的算术平方根是 ,故选B.

  考点:算术平方根.

  2.下列运算正确的是(  )

  A.a3•a3=2a6 B.a3+a3=2a6 C.(a3)2=a6 D.a6•a2=a3

  【答案】C.

  试题分析:选项A,a3•a3=a6;选项B,a3+a3=2a3;选项C,(a3)2=a6;选项D,a6•a2=a8.故选C.

  考点:整式的运算.

  3.把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是(  )

  A. B. C. D.

  【答案】C.

  考点:中心对称图形;轴对称图形.

  4.三角形的重心是(  )

  A.三角形三条边上中线的交点

  B.三角形三条边上高线的交点

  C.三角形三条边垂直平分线的交点

  D.三角形三条内角平行线的交点

  【答案】A.

  试题分析:三角形的重心是三条中线的交点,故选A.

  考点:三角形的重心.

  5.某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是(  )

  A.平均数不变,方差不变 B.平均数不变,方差变大

  C.平均数不变,方差变小 D.平均数变小,方差不变

  【答案】C.

  试题分析: ,S2原= ; ,S2新= ,平均数不变,方差变小,故选C.学#科网

  考点:平均数;方差.

  6.如图,P为反比例函数y= (k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是(  )

  A.2 B.4 C.6 D.8

  【答案】D.

  ∴C(0,﹣4),G(﹣4,0),

  ∴OC=OG,

  ∴∠OGC=∠OCG=45°

  ∵PB∥OG,PA∥OC,

  ∵∠AOB=135°,

  ∴∠OBE+∠OAE=45°,

  ∵∠DAO+∠OAE=45°,

  ∴∠DAO=∠OBE,

  ∵在△BOE和△AOD中, ,

  ∴△BOE∽△AOD;

  ∴ ,即 ;

  整理得:nk+2n2=8n+2n2,化简得:k=8;

  故选D.

  考点:反比例函数综合题.

  2018泰州中考数学试卷二、填空题

  (每题3分,满分30分,将答案填在答题纸上)

  7. |﹣4|=   .

  【答案】4.

  试题分析:正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.由此可得|﹣4|=4.

  考点:绝对值.

  8.天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为   .

  【答案】4.25×104.

  考点:科学记数法.

  9.已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为   .

  【答案】8.

  试题分析:当2m﹣3n=﹣4时,原式=mn﹣4m﹣mn+6n=﹣4m+6n=﹣2(2m﹣3n)=﹣2×(﹣4)=8.

  考点:整式的运算;整体思想. 学#科.网

  10. 一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是   .(填“必然事件”、“不可能事件”或“随机事件”)

  【答案】不可能事件.

  试题分析:已知袋子中3个小球的标号分别为1、2、3,没有标号为4的球,即可知从中摸出1个小球,标号为“4”,这个事件是不可能事件.

  考点:随机事件.

  11.将一副三角板如图叠放,则图中∠α的度数为   .

  【答案】15°.

  试题分析:由三角形的外角的性质可知,∠α=60°﹣45°=15°.

  考点:三角形的外角的性质.

  12.扇形的半径为3cm,弧长为2πcm,则该扇形的面积为   cm2.

  【答案】3π.

  试题分析:设扇形的圆心角为n,则:2π= ,解得:n=120°.所以S扇形= =3πcm2.

  考点:扇形面积的计算.

  13.方程2x2+3x﹣1=0的两个根为x1、x2,则 的值等于   .

  【答案】3.

  试题分析:根据根与系数的关系得到x1+x2=﹣ ,x1x2=﹣ , 所以 = =3.

  考点:根与系数的关系.

  14.小明沿着坡度i为1: 的直路向上走了50m,则小明沿垂直方向升高了   m.

  【答案】25.

  考点:解直角三角形的应用.

  15.如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为   .

  【答案】(7,4)或(6,5)或(1,4).

  考点:三角形的外接圆;坐标与图形性质;勾股定理.

  16.如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为   .

  【答案】6

  试题分析:如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,

  在Rt△ABC′中,易知AB=BC′=6,∠ABC′=90°,∴EE′=AC′= =6 .21世纪教育网

  考点:轨迹;平移变换;勾股定理.

  2018泰州中考数学试卷三、解答题

  (本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)

  17.(1)计算:( ﹣1)0﹣(﹣ )﹣2+ tan30°;

  (2)解方程: .

  【答案】(1)-2;(2)分式方程无解.

  考点:实数的运算;解分式方程.

  18. “泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:

  根据以上信息完成下列问题:

  (1)补全条形统计图;

  (2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.

  【答案】(1)详见解析;(2)960.

  (2)该校全体学生中每周学习数学泰微课在16至30个之间的有1200× =960人.

  考点:条形统计图;用样本估计总体.21世纪教育网

  19.在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.

  【答案】 .

  考点:用列表法或画树状图法求概率.

  20.(8分)如图,△ABC中,∠ACB>∠ABC.

  (1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);

  (2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.

  【答案】(1)详见解析;(2)4.

  试题分析:(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.

  试题解析:

  (1)如图所示,射线CM即为所求;

  (2)∵∠ACD=∠ABC,∠CAD=∠BAC,

  ∴△ACD∽△ABC,

  ∴ ,即 ,

  ∴AD=4. 学@科网

  考点:基本作图;相似三角形的判定与性质.

  21.平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).

  (1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;

  (2)如图,一次函数y=﹣ x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围.

  【答案】(1)点P在一次函数y=x﹣2的图象上,理由见解析;(2)1

  考点:一次函数图象上点的坐标特征;一次函数的性质.

  22.如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.

  (1)求证:△ABE≌△DAF;

  (2)若AF=1,四边形ABED的面积为6,求EF的长.

  【答案】(1)详见解析;(2)2.

  由题意2× ×(x+1)×1+ ×x×(x+1)=6,

  解得x=2或﹣5(舍弃),

  ∴EF=2.

  考点:正方形的性质;全等三角形的判定和性质;勾股定理.

  23.怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.

  (1)该店每天卖出这两种菜品共多少份?

  (2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?

  【答案】(1) 该店每天卖出这两种菜品共60份;(2) 这两种菜品每天的总利润最多是316元.

  试题分析:(1)由A种菜和B种菜每天的营业额为1120和总利润为280建立方程组即可;(2)设出A种菜多卖出a份,则B种菜少卖出a份,最后建立利润与A种菜少卖出的份数的函数关系式即可得出结论.

  试题解析:

  =(6﹣0.5a)(20+a)+(4+0.5a)(40﹣a)

  =(﹣0.5a2﹣4a+120)+(﹣0.5a2+16a+160)

  =﹣a2+12a+280

  =﹣(a﹣6)2+316

  当a=6,w最大,w=316

  答:这两种菜品每天的总利润最多是316元.

  考点:二元一次方程组和二次函数的应用.

  24.如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.

  (1)求证:点P为 的中点;

  (2)若∠C=∠D,求四边形BCPD的面积.

  【答案】(1)详见解析;(2)18 .

  试题分析:(1)连接OP,根据切线的性质得到PC⊥OP,根据平行线的性质得到BD⊥OP,根据垂径定理

  ∵∠POB=2∠D,

  ∴∠POB=2∠C,

  ∵∠CPO=90°,

  ∴∠C=30°,

  ∵BD∥CP,

  ∴∠C=∠DBA,

  ∴∠D=∠DBA,

  ∴BC∥PD,

  ∴四边形BCPD是平行四边形,

  ∴四边形BCPD的面积=PC•PE=6 ×3=18 .学科%网

  考点:切线的性质;垂径定理;平行四边形的判定和性质.

  25.阅读理解:

  如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.

  例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.

  解决问题:

  如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.

  (1)当t=4时,求点P到线段AB的距离;

  (2)t为何值时,点P到线段AB的距离为5?

  (3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)

  【答案】(1) 4 ;(2) t=5或t=11;(3)当8﹣2 ≤t≤ 时,点P到线段AB的距离不超过6.

  试题分析:(1)作AC⊥x轴,由PC=4、AC=4,根据勾股定理求解可得;(2)作BD∥x轴,分点P在AC

  则AC=4、OC=8,

  当t=4时,OP=4,

  ∴PC=4,

  ∴点P到线段AB的距离PA= = =4 ;

  (2)如图2,过点B作BD∥x轴,交y轴于点E,

  ①当点P位于AC左侧时,∵AC=4、P1A=5,

  ∴P1C= =3,

  ∴OP1=5,即t=5;

  ②当点P位于AC右侧时,过点A作AP2⊥AB,交x轴于点P2,

  ∴∠CAP2+∠EAB=90°,

  ∵BD∥x轴、AC⊥x轴,

  ∴CE⊥BD,

  (3)如图3,

  ①当点P位于AC左侧,且AP3=6时,

  则P3C= =2 ,

  ∴OP3=OC﹣P3C=8﹣2 ;

  ②当点P位于AC右侧,且P3M=6时,

  过点P2作P2N⊥P3M于点N,

  考点:一次函数的综合题.

  26.平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).

  (1)若一次函数y1=kx+b的图象经过A、B两点.

  ①当a=1、d=﹣1时,求k的值;

  ②若y1随x的增大而减小,求d的取值范围;

  (2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;

  (3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.

  【答案】(1)①-3;②d>﹣4;(2)AB∥x轴,理由见解析;(3)线段CD的长随m的值的变化而变化.

  当8﹣2m=0时,m=4时,CD=|8﹣2m|=0,即点C与点D重合;当m>4时,CD=2m﹣8;当m<4时,CD=8﹣2m.

  试题分析:(1)①当a=1、d=﹣1时,m=2a﹣d=3,于是得到抛物线的解析式,然后求得点A和点B的坐标,最后将点A和点B的坐标代入直线AB的解析式求得k的值即可;②将x=a,x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,然后依据y1随着x的增大而减小,可得到﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),结合已知条件2a﹣m=d,可求得d的取值范围;(2)由d=﹣4可得到m=2a+4,则抛物线的解析式为y=﹣x2+(2a+2)x+4a+8,然后将x=a、x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,最后依据点A和点B的纵坐标可判断出AB与x轴的位置关系;(3)先求得点A和点B的坐标,于是得到点A和点B运动的路线与字母a的函数关系式,则点C(0,2m),D(0,4m﹣8),于是可得到CD与m的关系式.

  试题解析:

  (1)①当a=1、d=﹣1时,m=2a﹣d=3,

  所以二次函数的表达式是y=﹣x2+x+6.

  ∵a=1,

  ∴点A的横坐标为1,点B的横坐标为3,

  把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0,

  ∴A(1,6),B(3,0).

  将点A和点B的坐标代入直线的解析式得: ,解得: ,

  所以k的值为﹣3.

  把x=a+2代入抛物线的解析式得:y=a2+6a+8.

  ∴A(a,a2+6a+8)、B(a+2,a2+6a+8).

  ∵点A、点B的纵坐标相同,

  ∴AB∥x轴.

  (3)线段CD的长随m的值的变化而变化.

  ∵y=﹣x2+(m﹣2)x+2m过点A、点B,

  ∴当x=a时,y=﹣a2+(m﹣2)a+2m,当x=a+2时,y=﹣(a+2)2+(m﹣2)(a+2)+2m,

  ∴A(a,﹣a2+(m﹣2)a+2m)、B(a+2,﹣(a+2)2+(m﹣2)(a+2)+2m).

  ∴点A运动的路线是的函数关系式为y1=﹣a2+(m﹣2)a+2m,点B运动的路线的函数关系式为y2=﹣(a+2)

  考点:二次函数综合题.


猜你喜欢:

1.2017年中考数学试卷含答案

2.2017中考数学试卷真题含答案

3.中考数学规律题及答案解析

4.中考数学仿真模拟试题附答案

5.江苏省泰州市中考语文试卷及答案

3703168