学习啦>学习方法>各学科学习方法>数学学习方法>

2018海南中考数学试卷答案解析版

时间: 丽仪1102 分享

  2018年的海南中考,大家都在紧张的备考阶段,数学科目想要拿高分,就得多做一些试卷练习题。下面由学习啦小编为大家提供关于2018海南中考数学试卷答案解析版,希望对大家有帮助!

  2018海南中考数学试卷一、选择题

  (本大题共14小题,每小题3分,共42分)

  1.2017的相反数是( )

  A.﹣2017 B.2017 C. D.

  【答案】A.

  【解析】

  试题分析:根据相反数特性:若a.b互为相反数,则a+b=0即可解题.∵2017+(﹣2017)=0,

  ∴2017的相反数是(﹣2017),故选 A.

  考点:相反数.

  2.已知a=﹣2,则代数式a+1的值为( )

  A.﹣3 B.﹣2 C.﹣1 D.1

  【答案】C.

  【解析】

  试题分析:把a的值代入原式计算即可得到结果.当a=﹣2时,原式=﹣2+1=﹣1,

  故选C.

  考点:代数式求值.

  3.下列运算正确的是( )

  A.a3+a2=a5 B.a3÷a2=a C.a3a2=a6 D.(a3)2=a9

  【答案】B.

  【解析】

  考点:同底数幂的运算法则.

  4.如图是一个几何体的三视图,则这个几何体是( )

  A.三棱柱 B.圆柱 C.圆台 D.圆锥

  【答案】D.

  【解析】

  试题分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.

  根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选D.

  考点:三视图.

  5.如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为( )

  A.45° B.60° C.90° D.120°

  【答案】C.

  【解析】

  试题分析:根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.

  ∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选C.

  考点:垂线的定义,平行线的性质.

  6.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是( )

  A.(-3,2) B.(2,-3) C.(1,-2) D.(-1,2)

  【答案】B.

  【解析】

  试题分析:首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.

  如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.

  考点:平移的性质,轴对称的性质.

  7.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为( )

  A.5 B.6 C.7 D.8

  【答案】B.

  考点:科学记数法.

  8.若分式 的值为0,则x的值为( )

  A.﹣1 B.0 C.1 D.±1

  【答案】A.

  【解析】

  试题分析:直接利用分式的值为零则分子为零,分母不等于零,进而而得出答案.

  ∵分式 的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选A.

  考点:分式的意义.

  9.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:

  年龄(岁) 12 13 14 15 16

  人数 1 4 3 5 7

  则这20名同学年龄的众数和中位数分别是( )

  A.15,14 B.15,15 C.16,14 D.16,15

  【答案】D.

  【解析】

  试题分析:众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.

  ∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,

  ∴出现次数最多的数据是16,∴同学年龄的众数为16岁;

  ∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,

  ∴中位数为(15+15)÷2=15,故中位数为15.故选D.

  考点:中位数,众数.

  10.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( )

  A. B. C. D.

  【答案】D.

  【解析】

  试题分析:首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.

  列表如下:

  1 2 3 4

  1 (1,1) (2,1) (3,1) (4,1)

  2 (1,2) (2,2) (3,2) (4,2)

  3 (1,3) (2,3) (3,3) (4,3)

  4 (1,4) (2,4) (3,4) (4,4)

  ∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,

  ∴两个转盘的指针都指向2的概率为 ,

  故选:D.

  考点:用列表法求概率.

  11.如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是( )

  A.14 B.16 C.18 D.20

  【答案】C.

  考点:菱形的性质,勾股定理.

  12.如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为( )

  A.25° B.50° C.60° D.80°

  【答案】B.

  考点:圆周角定理及推论,平行线的性质.

  13.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条.

  A.3 B.4 C.5 D.6

  【答案】B.

  【解析】

  试题分析:根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.

  如图所示:

  当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.

  故选B.

  考点:等腰三角形的性质.

  14.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数 在第一象限内的图象与△ABC有交点,则k的取值范围是( )

  A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16

  【答案】C.

  【解析】

  试题分析:由于△ABC是直角三角形,所以当反比例函数 经过点A时k最小,进过点C时k最大,据此可得出结论.

  ∵△ABC是直角三角形,∴当反比例函数 经过点A时k最小,经过点C时k最大,

  ∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.

  考点:反比例函数的性质.

  2018海南中考数学试卷二、填空题

  (本大题共4小题,每小题4分,共16分)

  15.不等式2x+1>0的解集是 x>﹣ .

  【答案】 .

  【解析】

  考点:一元一次不等式的解法.

  16.在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1”,“<”或“=”)

  【答案】 .

  【解析】

  试题分析:根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1

  ∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.

  ∵x1

  考点:一次函数的性质.

  17.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是 .

  【答案】 .

  【解析】

  试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.

  由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,

  ∴∠EFC+∠AFB=90°,∵∠B=90°,

  ∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF= = ,

  ∴cos∠EFC= ,故答案为: .

  考点:轴对称的性质,矩形的性质,余弦的概念.

  18.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是 .

  【答案】 .

  【解析】

  试题分析:根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.

  如图,∵点M,N分别是AB,AC的中点,∴MN= BC,

  ∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,

  连接BO并延长交⊙O于点C′,连接AC′,

  ∵BC′是⊙O的直径,∴∠BAC′=90°.

  ∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′= = =5 ,

  ∴MN最大= .故答案为: .

  考点:三角形的中位线定理,等腰直角三角形的性质,圆周角定理,解直角三角形.

  2018海南中考数学试卷三、解答题

  (本大题共62分)

  19.计算;

  (1) ﹣|﹣3|+(﹣4)×2﹣1;

  (2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)

  【答案】(1)-1;(2) .

  考点:整式的混合运算,实数的混合运算.

  20.在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.

  【答案】甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.

  【解析】

  试题分析:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.

  试题解析:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,

  由题意得, ,

  解得: .

  答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米..

  考点:二元一次方程组的应用.

  21.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.

  请结合以上信息解答下列问题:

  (1)m= 150 ;

  (2)请补全上面的条形统计图;

  (3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 36° ;

  (4)已知该校共有1200名学生,请你估计该校约有 240 名学生最喜爱足球活动.

  【答案】(1)150;(2)见解析;(3)36°;(4)240.

  【解析】

  试题分析:(1)根据图中信息列式计算即可;

  (2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;

  (3)360°×乒乓球”所占的百分比即可得到结论;

  (4)根据题意计算计算即可.

  试题解析:(1)m=21÷14%=150,

  (2)“足球“的人数=150×20%=30人,

  补全上面的条形统计图如图所示;

  (3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°× =36°;

  (4)1200×20%=240人,

  答:估计该校约有240名学生最喜爱足球活动.

  故答案为:150,36°,240.

  考点:条形统计图,扇形统计图,样本估计总体.

  22.为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.

  (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

  【答案】水坝原来的高度为12米..

  【解析】

  试题分析:设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.

  考点:解直角三角形的应用,坡度.

  23.如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.

  (1)求证:△CDE≌△CBF;

  (2)当DE= 时,求CG的长;

  (3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.

  【答案】(1)见解析;(2) ;(3)不能.

  【解析】

  试题分析:(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;

  (2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;

  (3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.

  试题解析:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,

  ∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,

  ∵CF⊥CE,∴∠ECF=90°,

  ∴∠3+∠2=∠ECF=90°,∴∠1=∠3,

  在△CDE和△CBF中,

  ∴△CDE≌△CBF,

  (2)在正方形ABCD中,AD∥BC,

  ∴△GBF∽△EAF,∴ ,

  由(1)知,△CDE≌△CBF,

  ∴BF=DE= ,

  ∵正方形的边长为1,∴AF=AB+BF= ,AE=AD﹣DE= ,

  ∴, ,∴BG= ,∴CG=BC﹣BG= ;

  (3)不能,

  理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,

  ∴AD﹣AE=BC﹣CG,

  ∴DE=BG,

  由(1)知,△CDE≌△ECF,

  ∴DE=BF,CE=CF,

  ∴△GBF和△ECF是等腰直角三角形,

  ∴∠GFB=45°,∠CFE=45°,

  ∴∠CFA=∠GFB+∠CFE=90°,

  此时点F与点B重合,点D与点E重合,与题目条件不符,

  ∴点E在运动过程中,四边形CEAG不能是平行四边形.

  考点:正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定.

  24.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).

  (1)求该抛物线所对应的函数解析式;

  (2)该抛物线与直线 相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.

  ①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;

  ②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.

  【答案】(1) ;(2)① ;②存在,(2, )或( , ).

  【解答】解:

  (1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),

  ∴ ,解得

  ∴该抛物线对应的函数解析式为 ;

  (2)①∵点P是抛物线上的动点且位于x轴下方,

  ∴可设P(t, )(1

  ∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,

  ∴M(t,0),N(t, ),

  ∴PN= .

  联立直线CD与抛物线解析式可得 ,解得 或 ,

  ∴C(0,3),D(7, ),

  分别过C、D作直线PN的直线,垂足分别为E、F,如图1,

  则CE=t,DF=7﹣t,

  ∴S△PCD=S△PCN+S△PDN= PN•CE+ PNDF= PN= ,

  ∴当t= 时,△PCD的面积有最大值,最大值为 ;

  ②存在.

  ∵∠CQN=∠PMB=90°,

  ∴当△CNQ与△PBM相似时,有 或 两种情况,

  ∵CQ⊥PM,垂足为Q,

  ∴Q(t,3),且C(0,3),N(t, ),

  ∴CQ=t,NQ= ﹣3= ,

  ∴ ,

  ∵P(t, ),M(t,0),B(5,0),

  ∴BM=5﹣t,PM=0﹣( )= ,

  当 时,则PM= BM,即 ,解得t=2或t=5(舍去),此时P(2, );

  当 时,则BM= PM,即5﹣t= ( ),解得t= 或t=5(舍去),此时P( , );

  综上可知存在满足条件的点P,其坐标为P(2, )或( , ).

  考点:二次函数的综合应用,待定系数法,函数图象的交点,二次函数的性质,相似三角形的判定和性质,方程思想,分类讨论思想.


猜你喜欢:

1.2017中考数学试卷真题含答案

2.中考数学规律题及答案解析

3.中考数学第一轮复习题及答案

4.2015年海南省英语中考试卷及答案

5.2018年语文中考题答案

3703076