学习啦>学习方法>初中学习方法>初三学习方法>九年级数学>

初三上册期末数学试题

时间: 郑晓823 分享

  为即将到来的期末考试,教师们要如何准备呢?接下来是学习啦小编为大家带来的初三上册期末数学试题,供大家参考。

  初三上册期末数学试题:

  一、选择题(共8小题,每小题4分,满分32分)

  1.方程x2﹣3x﹣5=0的根的情况是(  )

  A. 有两个不相等的实数根 B. 有两个相等的实数根

  C. 没有实数根 D. 无法确定是否有实数根

  考点: 根的判别式.

  分析: 求出b2﹣4ac的值,再进行判断即可.

  解答: 解:x2﹣3x﹣5=0,

  △=b2﹣4ac=(﹣3)2﹣4×1×(﹣5)=29>0,

  所以方程有两个不相等的实数根,

  故选A.

  点评: 本题考查了一元二次方程的根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.

  2.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为(  )

  A. B. C. D.

  考点: 锐角三角函数的定义.

  分析: 直接根据三角函数的定义求解即可.

  解答: 解:∵Rt△ABC中,∠C=90°,BC=3,AB=5,

  ∴sinA= = .

  故选A.

  点评: 此题考查的是锐角三角函数的定义,比较简单,用到的知识点:

  正弦函数的定义:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.即sinA=∠A的对边:斜边=a:c.

  3.若是某个几何体的三视图,则这个几何体是(  )

  A. 长方体 B. 正方体 C. 圆柱 D. 圆锥

  考点: 由三视图判断几何体.

  分析: 由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.

  解答: 解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.

  故选:D.

  点评: 本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.

  4.小丁去看某场电影,只剩下的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是(  )

  A. B. C. D.

  考点: 概率公式.

  分析: 由六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,直接利用概率公式求解即可求得答案.

  解答: 解:∵六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,

  ∴抽到的座位号是偶数的概率是: = .

  故选C.

  点评: 此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.

  5.△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为(  )

  A. 1 B. 2 C. 4 D. 8

  考点: 位似变换.

  专题: 计算题.

  分析: 根据位似变换的性质得到 = ,B1C1∥BC,再利用平行线分线段成比例定理得到 = ,所以 = ,然后把OC1= OC,AB=4代入计算即可.

  解答: 解:∵C1为OC的中点,

  ∴OC1= OC,

  ∵△ABC和△A1B1C1是以点O为位似中心的位似三角形,

  ∴ = ,B1C1∥BC,

  ∴ = ,

  ∴ = ,

  即 =

  ∴A1B1=2.

  故选B.

  点评: 本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.

  6.已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣ 的图象上的两点,若x1<0

  A. y1<0

  考点: 反比例函数图象上点的坐标特征.

  专题: 计算题.

  分析: 根据反比例函数图象上点的坐标特征得到y1=﹣ ,y2=﹣ ,然后利用x1<0

  解答: 解:∵A(x1,y1),B(x2,y2)是反比例函数y=﹣ 的图象上的两点,

  ∴y1=﹣ ,y2=﹣ ,

  ∵x1<0

  ∴y2<0

  R>故选B.

  点评: 本题考查了反比例函数图象上点的坐标特征:反比例函数y= (k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.

  7.AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为(  )

  A. B. C. 1 D. 2

  考点: 垂径定理;全等三角形的判定与性质.

  分析: 根据垂径定理求出AD,证△ADO≌△OFE,推出OF=AD,即可求出答案.

  解答: 解:∵OD⊥AC,AC=2,

  ∴AD=CD=1,

  ∵OD⊥AC,EF⊥AB,

  ∴∠ADO=∠OFE=90°,

  ∵OE∥AC,

  ∴∠DOE=∠ADO=90°,

  ∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°,

  ∴∠DAO=∠EOF,

  在△ADO和△OFE中,

  ,

  ∴△ADO≌△OFE(AAS),

  ∴OF=AD=1,

  故选C.

  点评: 本题考查了全等三角形的性质和判定,垂径定理的应用,解此题的关键是求出△ADO≌△OFE和求出AD的长,注意:垂直于弦的直径平分这条弦.

  8.在矩形ABCD中,AB

  A. 线段EF B. 线段DE C. 线段CE D. 线段BE

  考点: 动点问题的函数图象.

  分析: 作BN⊥AC,垂足为N,FM⊥AC,垂足为M,DG⊥AC,垂足为G,分别找出线段EF、CE、BE最小值出现的时刻即可得出结论.

  解答: 解:作BN⊥AC,垂足为N,FM⊥AC,垂足为M,DG⊥AC,垂足为G.

  由垂线段最短可知:当点E与点M重合时,即AE< 时,FE有最小值,与函数图象不符,故A错误;

  由垂线段最短可知:当点E与点G重合时,即AEd> 时,DE有最小值,故B正确;

  ∵CE=AC﹣AE,CE随着AE的增大而减小,故C错误;

  由垂线段最短可知:当点E与点N重合时,即AE< 时,BE有最小值,与函数图象不符,故D错误;

  故选:B.

  点评: 本题主要考查的是动点问题的函数图象,根据垂线段最短确定出函数最小值出现的时刻是解题的关键.

  二、填空题(共4小题,每小题4分,满分16分)

  9.已知扇形的半径为3cm,圆心角为120°,则扇形的面积为 3π cm2.(结果保留π)

  考点: 扇形面积的计算.

  专题: 压轴题.

  分析: 知道扇形半径,圆心角,运用扇形面积公式就能求出.

  解答: 解:由S= 知

  S= × π×32=3πcm2.

  点评: 本题主要考查扇形面积的计算,知道扇形面积计算公式S= .

  10.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为 24 m.

  考点: 相似三角形的应用.

  分析: 根据同时同地的物高与影长成正比列式计算即可得解.

  解答: 解:设这栋建筑物的高度为xm,

  由题意得, = ,

  解得x=24,

  即这栋建筑物的高度为24m.

  故答案为:24.

  点评: 本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.

  11.抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为 x1=﹣2,x2=1 .

  考点: 二次函数的性质.

  专题: 数形结合.

  分析: 根据二次函数图象与一次函数图象的交点问题得到方程组 的解为 , ,于是易得关于x的方程ax2﹣bx﹣c=0的解.

  解答: 解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),

  ∴方程组 的解为 , ,

  即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.

  故答案为x1=﹣2,x2=1.

  点评: 本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣ , ),对称轴直线x=﹣ .也考查了二次函数图象与一次函数图象的交点问题.

  12.对于正整数n,定义F(n)= ,其中f(

  n)表示n的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F1(n)=F(n),Fk+1(n)=F(Fk(n)).例如:F1(123)=F(123)=10,F2(123)=F(F1(123))=F(10)=1.

  (1)求:F2(4)= 37 ,F2015(4)= 26 ;

  (2)若F3m(4)=89,则正整数m的最小值是 6 .

  考点: 规律型:数字的变化类.

  专题: 新定义.

  分析: 通过观察前8个数据,可以得出规律,这些数字7个一个循环,根据这些规律计算即可.

  解答: 解:(1)F2(4)=F(F1(4))=F(16)=12+62=37;

  F1(4)=F(4)=16,F2(4)=37,F3(4)=58,

  F4(4)=89,F5(4)=145,F6(4)=26,F7(4)=40,F8(4)=16,

  通过观察发现,这些数字7个一个循环,2015是7的287倍余6,因此F2015(4)=26;

  (2)由(1)知,这些数字7个一个循环,F4(4)=89=F18(4),因此3m=18,所以m=6.

  故答案为:(1)37,26;(2)6.

  点评: 本题属于数字变化类的规律探究题,通过观察前几个数据可以得出规律,熟练找出变化规律是解题的关键.

  三、解答题(共13小题,满分72分)

  13.计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+( )﹣1.

  考点: 实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.

  专题: 计算题.

  分析: 原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可.

  解答: 解:原式=﹣1+ ﹣1+2= .

  点评: 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

  14.△ABC中,AB=AC,D是BC中点,BE⊥AC于E,求证:△ACD∽△BCE.

  考点: 相似三角形的判定.

  专题: 证明题.

  分析: 根据等腰三角形的性质,由AB=AC,D是BC中点得到AD⊥BC,易得∠ADC=∠BEC=90°,再加上公共角,于是根据有两组角对应相等的两个三角形相似即可得到结论.

  解答: 证明:∵AB=AC,D是BC中点,

  ∴AD⊥BC,

  ∴∠ADC=90°,

  ∵BE⊥AC,

  ∴∠BEC=90°,

  ∴∠ADC=∠BEC,

  而∠ACD=∠BCE,

  ∴△ACD∽△BCE.

  点评: 本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了等腰三角形的性质.

  15.已知m是一元二次方程x2﹣3x﹣2=0的实数根,求代数式 的值.

  考点: 一元二次方程的解.

  专题: 计算题.

  分析: 把x=m代入方程得到m2﹣2=3m,原式分子利用平方差公式化简,将m2﹣2=3m代入计算即可求出值.

  解答: 解:把x=m代入方程得:m2﹣3m﹣2=0,即m2﹣2=3m,

  则原式= = =3.

  点评: 此题考查了一元二次方程的解,熟练掌握运算法则是解本题的关键.

  16.抛物线y=2x2平移后经过点A(0,3),B(2,3),求平移后的抛物线的表达式.

  考点: 二次函数图象与几何变换.

  专题: 计算题.

  分析: 由于抛物线平移前后二次项系数不变,则可设平移后的抛物线的表达式为y=2x2+bx+c,然后把点A和点B的坐标代入得到关于b、c的方程组,解方程组求出b、c即可得到平移后的抛物线的表达式.

  解答: 解:设平移后的抛物线的表达式为y=2x2+bx+c,

  把点A(0,3),B(2,3)分别代入得 ,解得 ,

  所以平移后的抛物线的表达式为y=2x2﹣4x+3.

  点评: 本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.

  17.在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y= 的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC.

  (1)求反比例函数的解析式;

  (2)若点P是反比例函数y= 图象上的一点,且满足△OPC与△ABC的面积相等,请直接写出点P的坐标.

  考点: 反比例函数与一次函数的交点问题.

  分析: (1)把A点横坐标代入正比例函数可求得A点坐标,代入反比例函数解析式可求得k,可求得反比例函数解析式;

  (2)由条件可求得B、C的坐标,可先求得△ABC的面积,再结合△OPC与△ABC的面积相等求得P点坐标.

  解答: 解:

  (1)把x=2代入y=2x中,得y=2×2=4,

  ∴点A坐标为(2,4),

  ∵点A在反比例函数y= 的图象上,

  ∴k=2×4=8,

  ∴反比例函数的解析式为y= ;

  (2)∵AC⊥OC,

  ∴OC=2,

  ∵A、B关于原点对称,

  ∴B点坐标为(﹣2,﹣4),

  ∴B到OC的距离为4,

  ∴S△ABC=2S△ACO=2× ×2×4=8,

  ∴S△OPC=8,

  设P点坐标为(x, ),则P到OC的距离为| |,

  ∴ ×| |×2=8,解得x=1或﹣1,

  ∴P点坐标为(1,8)或(﹣1,﹣8).

  点评: 本题主要考查待定系数法求函数解析式及函数的交点问题,在(1)中求得A点坐标、在(2)中求得P点到OC的距离是解题的关键.

  18.△ABC中,∠ACB=90°,sinA= ,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.

  (1)求线段CD的长;

  (2)求cos∠ABE的值.

  考点: 解直角三角形;勾股定理.

  专题: 计算题.

  分析: (1)在△ABC中根据正弦的定义得到sinA= = ,则可计算出AB=10,然后根据直角三角形斜边上的中线性质即可得到CD= AB=5;

  (2)在Rt△ABC中先利用勾股定理计算出AC=6,在根据三角形面积公式得到S△BDC=S△ADC,则S△BDC= S△ABC,即 CD•BE= • AC•BC,于是可计算出BE= ,然后在Rt△BDE中利用余弦的定义求解.

  解答: 解:(1)在△ABC中,∵∠ACB=90°,

  ∴sinA= = ,

  而BC=8,

  ∴AB=10,

  ∵D是AB中点,

  ∴CD= AB=5;

  (2)在Rt△ABC中,∵AB=10,BC=8,

  ∴AC= =6,

  ∵D是AB中点,

  ∴BD=5,S△BDC=S△ADC,

  ∴S△BDC= S△ABC,即 CD•BE= • AC•BC,

  ∴BE= = ,

  在Rt△BDE中,cos∠DBE= = = ,

  即cos∠ABE的值为 .

  点评: 本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了直角三角形斜边上的中线性质和三角形面积公式.

  19.已知关于x的一元二次方程mx2﹣(m+2)x+2=有两个不相等的实数根x1,x2.

  (1)求m的取值范围;

  (2)若x2<0,且 >﹣1,求整数m的值.

  考点: 根的判别式;根与系数的关系.

  专题: 计算题.

  分析: (1)由二次项系数不为0,且根的判别式大于0,求出m的范围即可;

  (2)利用求根公式表示出方程的解,根据题意确定出m的范围,找出整数m的值即可.

  解答: 解:(1)由已知得:m≠0且△=(m+2)2﹣8m=(m﹣2)2>0,

  则m的范围为m≠0且m≠2;

  (2)方程解得:x= ,即x=1或x= ,

  ∵x2<0,∴x2= <0,即m<0,

  ∵ >﹣1,

  ∴ >﹣1,即m>﹣2,

  ∵m≠0且m≠2,

  ∴﹣2

  ∵m为整数,

  ∴m=﹣1.

  点评: 此题考查了根的判别式,一元二次方程有两个不相等的实数根即为根的判别式大于0.

  20.某工厂生产的某种产品按质量分为10个档次,据调查显示,每个档次的日产量及相应的单件利润如表所示(其中x为正整数,且1≤x≤10);

  质量档次 1 2 … x … 10

  日产量(件) 95 90 … 100﹣5x … 50

  单件利润(万元) 6 8 … 2x+4 … 24

  为了便于调控,此工厂每天只生产一个档次的产品,当生产质量档次为x的产品时,当天的利润为y万元.

  (1)求y关于x的函数关系式;

  (2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.

  考点: 二次函数的应用.

  分析: (1)根据总利润=单件利润×销售量就可以得出y与x之间的函数关系式;

  (2)由(1)的解析式转化为顶点式,由二次函数的性质就可以求出结论.

  解答: 解:(1)由题意,得

  y=(100﹣5x)(2x+4),

  y=﹣10x2+180x+400(1≤x≤10的整数);

  答:y关于x的函数关系式为y=﹣10x2+180x+400;

  (2)∵y=﹣10x2+180x+400,

  ∴y=﹣10(x﹣9)2+1210.

  ∵1≤x≤10的整数,

  ∴x=9时,y最大=1210.

  答:工厂为获得最大利润,应选择生产9档次的产品,当天利润的最大值为1210万元.

  点评: 本题考查了总利润=单件利润×销售量的运用,二次函数的解析式的运用,顶点式的运用,解答时求出函数的解析式是关键.

  21.四边形ABCD是平行四边形,点A,B,C在⊙O上,AD与⊙O相切,射线AO交BC于点E,交⊙O于点F.点P在射线AO上,且∠PCB=2∠BAF.

  (1)求证:直线PC是⊙O的切线;

  (2)若AB= ,AD=2,求线段PC的长.

  考点: 切线的判定;勾股定理;平行四边形的性质;相似三角形的判定与性质.

  分析: (1)首先连接OC,由AD与⊙O相切,可得FA⊥AD,四边形ABCD是平行四边形,可得AD∥BC,然后由垂径定理可证得F是 的中点,BE=CE,∠OEC=90°,又由∠PCB=2∠BAF,即可求得∠OCE+∠PCB=90°,继而证得直线PC是⊙O的切线;

  (2)首先由勾股定理可求得AE的长,然后设⊙O的半径为r,则OC=OA=r,OE=3﹣r,则可求得半径长,易得△OCE∽△CPE,然后由相似三角形的对应边成比例,求得线段PC的长.

  解答: (1)证明:连接OC.

  ∵AD与⊙O相切于点A,

  ∴FA⊥AD.

  ∵四边形ABCD是平行四边形,

  ∴AD∥BC,

  ∴FA⊥BC.

  ∵FA经过圆心O,

  ∴F是 的中点,BE=CE,∠OEC=90°,

  ∴∠COF=2∠BAF.

  ∵∠PCB=2∠BAF,

  ∴∠PCB=∠COF.

  ∵∠OCE+∠COF=180°﹣∠OEC=90°,

  ∴∠OCE+∠PCB=90°.

  ∴OC⊥PC.

  ∵点C在⊙O上,

  ∴直线PC是⊙O的切线.

  (2)解:∵四边形ABCD是平行四边形,

  ∴BC=AD=2.

  ∴BE=CE=1.

  在Rt△ABE中,∠AEB=90°,AB= ,

  ∴ .

  设⊙O的半径为r,则OC=OA=r,OE=3﹣r.

  在Rt△OCE中,∠OEC=90°,

  ∴OC2=OE2+CE2.

  ∴r2=(3﹣r)2+1.

  解得 ,

  ∵∠COE=∠PCE,∠OEC=∠CEP=90°.

  ∴△OCE∽△CPE,

  ∴ .

  ∴ .

  ∴ .

  点评: 此题考查了切线的判定、平行四边形的性质、勾股定理以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.

  22.阅读下面材料:

  小明观察一个由1×1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1,他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值.

  请回答:

  (1)A,B,C是点阵中的三个点,请在点阵中找到点D,作出线段CD,使得CD⊥AB;

  (2)线段AB与CD交于点O.为了求出∠AOD的正切值,小明在点阵中找到了点E,连接AE,恰好满足AE⊥CD于点F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.

  请你帮小明计算:OC=   ;tan∠AOD= 5 ;

  解决问题:

  如图3,计算:tan∠AOD=   .

  考点: 相似形综合题.

  分析: (1)用三角板过C作AB的垂线,从而找到D的位置;

  (2)连接AC、DB、AD、DE.由△ACO∽△DBO求得CO的长,由等腰直角三角形的性质可以求出AF,DF的长,从而求出OF的长,在Rt△AFO中,根据锐角三角函数的定义即可求出tan∠AOD的值;

  (3)如图,连接AE、BF,则AF= ,AB= ,由△AOE∽△BOF,可以求出AO= ,在Rt△AOF中,可以求出OF= ,故可求得tan∠AOD.

  解答: 解:(1)如图所示:

  线段CD即为所求.

  (2)如图2所示连接AC、DB、AD.

  ∵AD=DE=2,

  ∴AE=2 .

  ∵CD⊥

  AE,

  ∴DF=AF= .

  ∵AC∥BD,

  ∴△ACO∽△DBO.

  ∴CO:DO=2:3.

  ∴CO= .

  ∴DO= .

  ∴OF= .

  tan∠AOD= .

  (3)如图3所示:

  根据图形可知:BF=2,AE=5.

  由勾股定理可知:AF= = ,AB= = .

  ∵FB∥AE,

  ∴△AOE∽△BOF.

  ∴AO:OB=AE:FB=5:2.

  ∴AO= .

  在Rt△AOF中,OF= = .

  ∴tan∠AOD= .

  点评: 本题主要考查的是相似三角形的性质和判定、勾股定理的应用、锐角三角函数的定义,根据点阵图构造相似三角形是解题的关键.

看过哦初三上册期末数学试题的还看了:

1.九年级上册数学期末复习题

2.初三数学期末怎样复习

3.初三数学期末总复习的方法

4.初三期末数学复习计划

5.初三数学期末考试的复习方法

992031