2019年中考数学复习方法:常用公式定理及数学公式
2019年中考数学复习方法:常用公式定理及数学公式
新一轮中考复习备考周期正式开始,赛点中考复习为各位初三考生整理出了中考数学必考的知识点及公式,主要是对初中三年数学第一轮复习的知识点梳理和细化,帮助各位考生理清知识脉络,将所学知识系统复习,形成知识网络串联起来,为接下来的复习打好基础,并可以在考试中取得优异成绩!本章对常用公式定理进行总结,仅供广大考生参考!
2019年中考复习数学公式之常用公式定理
点与直线定理:
1. 过两点有且只有一条直线
2. 两点之间线段最短
3. 同角或等角的补角相等
4. 同角或等角的余角相等
5. 过一点有且只有一条直线和已知直线垂直
6. 直线外一点与直线上各点连接的所有线段中,垂线段最短
7. 平行公理经过直线外一点,有且只有一条直线与这条直线平行
8. 如果两条直线都和第三条直线平行,这两条直线也互相平行
9. 同位角相等,两直线平行
10. 内错角相等,两直线平行
11. 同旁内角互补,两直线平行
12. 两直线平行,同位角相等
13. 两直线平行,内错角相等
14. 两直线平行,同旁内角互补
三角形定理:
15. 定理三角形两边的和大于第三边
16. 推论三角形两边的差小于第三边
17. 三角形内角和定理三角形三个内角的和等于180°
18. 推论1直角三角形的两个锐角互余
19. 推论2三角形的一个外角等于和它不相邻的两个内角的和
20. 推论3三角形的一个外角大于任何一个和它不相邻的内角
21. 全等三角形的对应边、对应角相等
22. 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
23. 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
24. 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25. 边边边公理(SSS)有三边对应相等的两个三角形全等
26. 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27. 定理1在角的平分线上的点到这个角的两边的距离相等
28. 定理2到一个角的两边的距离相同的点,在这个角的平分线上
29. 角的平分线是到角的两边距离相等的所有点的集合
30. 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31. 推论1等腰三角形顶角的平分线平分底边并且垂直于底边
32. 推论2等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33. 推论3等边三角形的各角都相等,并且每一个角都等于60°
34. 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35. 推论1三个角都相等的三角形是等边三角形
36. 推论2有一个角等于60°的等腰三角形是等边三角形
37. 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38. 直角三角形斜边上的中线等于斜边上的一半
39. 定理线段垂直平分线上的点和这条线段两个端点的距离相等
40. 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41. 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42. 定理1关于某条直线对称的两个图形是全等形
43. 定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44. 定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45. 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46. 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47. 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
四边形定理:
48. 定理四边形的内角和等于360°
49. 四边形的外角和等于360°
50. 多边形内角和定理n边形的内角的和等于(n-2)×180°
51. 推论任意多边的外角和等于360°
52. 平行四边形性质定理 1 平行四边形的对角相等
53. 平行四边形性质定理 2 平行四边形的对边相等
54. 推论:夹在两条平行线间的平行线段相等
55. 平行四边形性质定理 3平行四边形的对角线互相平分
56. 平行四边形判定定理 1两组对角分别相等的四边形是平行四边形
57. 平行四边形判定定理 2两组对边分别相等的四边形是平行四边形
58. 平行四边形判定定理 3对角线互相平分的四边形是平行四边形
59. 平行四边形判定定理 4一组对边平行相等的四边形是平行四边形
60. 矩形性质定理 1矩形的四个角都是直
61. 矩形性质定理 2矩形的对角线相等
62. 矩形判定定理 1有三个角是直角的四边形是矩形
63. 矩形判定定理 2对角线相等的平行四边形是矩形
64. 菱形性质定理 1菱形的四条边都相等
65. 菱形性质定理 2菱形的对角线互相垂直,并且每一条对角线平分一组对角
66. 菱形面积=对角线乘积的一半,即 S=(a×b)÷2
67. 菱形判定定理 1 四边都相等的四边形是菱形
68. 菱形判定定理 2 对角线互相垂直的平行四边形是菱形
69. 正方形性质定理 1 正方形的四个角都是直角,四条边都相等
70. 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71. 定理1关于中心对称的两个图形是全等的
72. 定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73. 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74. 等腰梯形性质定理等腰梯形在同一底上的两个角相等
75. 等腰梯形的两条对角线相等
76. 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
77. 对角线相等的梯形是等腰梯形
78. 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79. 推论 1经过梯形一腰的中点与底平行的直线,必平分另一腰
80. 推论 2经过三角形一边的中点与另一边平行的直线,必平分第三边
81. 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
82. 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h
83. (1)比例的基本性质如果 a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
(2)合比性质如果 a/b=c/d,那么(a±b)/b=(c±d)/d
(3)等比性质如果 a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
84. 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
85. 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的应线段成比例
86. 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
87. 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
相似形:
88. 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
89. 相似三角形判定定理 1两角对应相等,两三角形相似(ASA)
90. 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
91. 判定定理 2两边对应成比例且夹角相等,两三角形相似(SAS)
92. 判定定理 3三边对应成比例,两三角形相似(SSS)
93. 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
94. 性质定理 1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
95. 性质定理 2相似三角形周长的比等于相似比
96. 性质定理 3相似三角形面积的比等于相似比的平方
锐角三角函数:
97. 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
98. 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
圆:
99. 圆是定点的距离等于定长的点的集合
100.圆的内部可以看作是圆心的距离小于半径的点的集合
101. 圆的外部可以看作是圆心的距离大于半径的点的集合
102.同圆或等圆的半径相等
103.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
104.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
105.到已知角的两边距离相等的点的轨迹,是这个角的平分线
106.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
107.定理不在同一直线上的三点确定一个圆。
108.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
109.推论 1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
110.推论2圆的两条平行弦所夹的弧相等
111.圆是以圆心为对称中心的中心对称图形
112.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
113.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦
114.心距中有一组量相等那么它们所对应的其余各组量都相等
115.定理一条弧所对的圆周角等于它所对的圆心角的一半
116. 推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
117.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
118. 推论 3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
119.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
120.①直线L和⊙O相交d
②直线L和⊙O相切d=r
③直线L和⊙O相离d>r
121.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
122. 切线的性质定理圆的切线垂直于经过切点的半径
123. 推论 1经过圆心且垂直于切线的直线必经过切点
124. 推论 2经过切点且垂直于切线的直线必经过圆心
125. 切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
126. 圆的外切四边形的两组对边的和相等
127.弦切角定理弦切角等于它所夹的弧对的圆周角
128. 推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
129. 相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等
130. 推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
131.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
132. 推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
133.如果两个圆相切,那么切点一定在连心线上
134.①两圆外离 d>R+r②两圆外切 d=R+r ③两圆相交 R-r
④两圆内切 d=R-r(R>r) ⑤两圆内含d
135.定理:相交两圆的连心线垂直平分两圆的公共弦
136.定理:把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
137. 定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
相关面积公式:
138.正n边形的每个内角都等于(n-2)×180°/n
139.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
140.正n边形的面积Sn=pnrn/2 (p表示正n边形的周长)
141.正三角形面积a/4 (a表示边长)
142.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
143.弧长计算公式:L=n兀R/180
144.扇形面积公式:S扇形=n兀R2/360=LR/2
145. 内公切线长=d-(R-r) 外公切线长= d-(R+r)
2019年中考数学复习必须做好这几点
一、中考的高分保障在基础
学好基础知识,扎实掌握好基础知识内容,对于中考数学复习来说是非常重要的一件事。毫不夸张地说,基础知识就是整个数学知识体系中最根本的基石。如一份120分的中考数学试卷,其中基础题就大约占80分之多,所占比重相当的高。
同时,我们要认真研究历年中考数学真题,会发现很多题目都是以课本上的例题和基础知识为原型进行改编。从这里就可以看出,基础知识在中考数学中占据重要地位,对中考复习起到一定的指导性工作。
那么,我们如何才能学好基础?本人觉得应该从以下几个方面入手:
1、要认认真真上课。
我们学习基础知识的主要阵地在课堂,离开课堂学习,就无法正确理解基础知识,更别说运用基础知识解决问题;
2、学会归纳和梳理知识点,记清概念,形成知识网络,抓住知识之间的联系。
很多学生做了很多题目,但数学成绩为何无法提高?关键就是忽视基础知识概念的巩固,如对知识概念、公理、定理、公式等理解不深,不能对概念做出一个明确判断,对概念的理解模棱两可,最终丢失分数。
掌握好基础知识内容,要学会把所有基础概念整理出来,形成知识网络,经常拿出来看一看、读一读、记一记等加深理解,同时更要结合针对性习题进行训练。
二、做题不靠数量,要做的“对”
要想中考数学出好成绩,肯定需要做一些习题、试卷、模拟试题等,但中考复习不仅仅是数学这一门学科,时间非常紧张。因此,中考复习的解题做题,大家对模拟题、习题等一定要精选精做,特别是历年中考数学真题,更要多做一些,把握中考数学试题方向。
通过中考数学历年真题卷的训练,大家可以及时了解知识点的分布和题型变化,帮助大家快速了解和掌握整个中考数学知识体系,帮助自己优化与完善知识体系,提高知识运用能力等。
通过习题训练,逐步掌握好解题方法、答题时间,培养良好的解题习惯。如学会认真审题、理清题意,再动手答题。解题速度也是需要通过习题训练来实现,如基础题、会的一定答对、答全,不再跳步、丢步骤等上面失分。
三、中考复习要忙而不乱、忙而不盲
很多人在中考复习过程中,极容易陷入“死做题”、“题海战术”当中,忽视通过解题对知识内容和方法技巧进行一个全面查漏补缺。
如在解题过程中,总会遇见错题,我们要及时整理、归纳这些错题,及时了解自身的优缺点,如基础知识掌握不扎实还是方法技巧上的欠缺。发现自身的问题,及时结合针对性的练习,及时消除身上的学习问题,这样才能让自己的学习取得进步。
如何做好查漏补缺的学习工作?做好错题本的工作就是最好的方法,整理归纳错题、重做错题就是一个反思、再学习的过程。
四、做好专题复习,综合提高中考能力
巩固基础知识同时,我能更要及时提升中考综合能力,最好的办法就是进行专题复习。如开展分类讨论、数形结合、动点问题等中考专题复习,尽量选择中考热点、重点专题,这些专题覆盖相关热门的中考知识点、数学思想、数学方法等。
通过专题复习,可以帮助我们及时把控中考复习进度、熟悉考试内容、题型,为考出优异的中考成绩打下一个坚实基础。