学习啦>学习方法>初中学习方法>初三学习方法>九年级数学>

中考数学知识点复习口诀及28个考点

时间: 惠敏1218 分享

  初中的数学是不是让你抓破脑袋?有哪些好的数学学习方法呢?以下是小编给大家带来的2019年中考数学知识点复习口诀及28个考点,仅供考生参考,欢迎大家阅读!

  2019年中考数学28个考点一定要吃透

  很多省份开始中考,根据统计,初中数学中有很多重难点,也是大多数同学的易错点!

  很多同学会在一些基础题上粗心,虽说是粗心,归根结底也是没有掌握牢固。

  再者,一些稍许设置陷阱的题,只有班上少数数学成绩较好的同学能够幸免。其他同学几乎都做错了,所以,这类似的题就极具代表性了,是典型题。

  这些常考、易错的知识点做了一个总结!!可以说中考必考,都是初中时期的典型重点,尤其是在期末考试之前就必须“吃透”。

  一、相似三角形(7个考点)

  考点1

  相似三角形的概念、相似比的意义、画图形的放大和缩小

  考核要求

  (1)理解相似形的概念;

  (2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

  考点2

  平行线分线段成比例定理、三角形一边的平行线的有关定理

  考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。

  注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

  考点3

  相似三角形的概念

  考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

  考点4

  相似三角形的判定和性质及其应用

  考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

  考点5

  三角形的重心

  考核要求:知道重心的定义并初步应用。

  考点6

  向量的有关概念

  考点7

  向量的加法、减法、实数与向量相乘、向量的线性运算

  考核要求:掌握实数与向量相乘、向量的线性运算

  二、锐角三角比(2个考点)

  考点8:

  锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

  考点9:

  解直角三角形及其应用

  考核要求:

  (1)理解解直角三角形的意义;

  (2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。

  三、二次函数(4个考点)

  考点10

  函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数

  考核要求:

  (1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;

  (2)知道常值函数;

  (3)知道函数的表示方法,知道符号的意义。

  考点11

  用待定系数法求二次函数的解析式

  考核要求:

  (1)掌握求函数解析式的方法;

  (2)在求函数解析式中熟练运用待定系数法。

  注意求函数解析式的步骤:一设、二代、三列、四还原。

  考点12

  画二次函数的图像

  考核要求:

  (1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像

  (2)理解二次函数的图像,体会数形结合思想;

  (3)会画二次函数的大致图像。

  考点13

  二次函数的图像及其基本性质

  考核要求:

  (1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;

  (2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。

  注意:

  (1)解题时要数形结合;

  (2)二次函数的平移要化成顶点式。

  四、圆的相关概念(6个考点)

  考点14

  圆心角、弦、弦心距的概念

  考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。

  考点15

  圆心角、弧、弦、弦心距之间的关系

  考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。

  考点16

  垂径定理及其推论

  垂径定理及其推论是圆这一板块中最重要的知识点之一。

  考点17

  直线与圆、圆与圆的位置关系及其相应的数量关系

  直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。

  考点18

  正多边形的有关概念和基本性质

  考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。

  考点19

  画正三、四、六边形。

  考核要求:能用基本作图工具,正确作出正三、四、六边形。

  五、数据整理和概率统计(9个考点)

  考点20

  确定事件和随机事件

  考核要求:

  (1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;

  (2)能区分简单生活事件中的必然事件、不可能事件、随机事件。

  考点21

  事件发生的可能性大小,事件的概率

  考核要求:

  (1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;

  (2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;

  (3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

  注意:

  (1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;

  (2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

  考点22

  等可能试验中事件的概率问题及概率计算

  考核要求

  (1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;

  (2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;

  (3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。

  注意:

  (1)计算前要先确定是否为可能事件;

  (2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

  考点23

  数据整理与统计图表

  考核要求:

  (1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;

  (2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

  考点24

  统计的含义

  考核要求:

  (1)知道统计的意义和一般研究过程;

  (2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。

  考点25

  平均数、加权平均数的概念和计算

  考核要求:

  (1)理解平均数、加权平均数的概念;

  (2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

  考点26

  中位数、众数、方差、标准差的概念和计算

  考核要求:

  (1)知道中位数、众数、方差、标准差的概念;

  (2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

  注意:

  (1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;

  (2)求中位数之前必须先将数据排序。

  考点27

  频数、频率的意义,画频数分布直方图和频率分布直方图

  考核要求:

  (1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;

  (2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。

  考点28

  中位数、众数、方差、标准差、频数、频率的应用

  考核要求:

  (1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;

  (2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;

  (3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题。

  2019年中考数学知识点复习口诀

  随着中考的即将来临,我们特意给大家整理一份数学知识点复习口诀,背起来更简单,用起来更顺畅喔~

  1 有理数的加法运算:

  同号相加一边倒;异号相加“大”减“小”,

  符号跟着大的跑;绝对值相等“零”正好.

  2 合并同类项:

  合并同类项,法则不能忘,只求系数和,字母、指数不变样.

  3 去、添括号法则:

  去括号、添括号,关键看符号,

  括号前面是正号,去、添括号不变号,

  括号前面是负号,去、添括号都变号.

  4 一元一次方程:

  已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.

  5 平方差公式:

  平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.

  6 完全平方公式:

  完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;

  首±尾括号带平方,尾项符号随中央.

  7 因式分解:

  一提(公因式)二套(公式)三分组,细看几项不离谱,

  两项只用平方差,三项十字相乘法,阵法熟练不马虎,

  四项仔细看清楚,若有三个平方数(项),

  就用一三来分组,否则二二去分组,

  五项、六项更多项,二三、三三试分组,

  以上若都行不通,拆项、添项看清楚.

  8 单项式运算:

  加、减、乘、除、乘(开)方,三级运算分得清,

  系数进行同级(运)算,指数运算降级(进)行.

  9 一元一次不等式解题的一般步骤:

  去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,

  两边除(以)负数时,不等号改向别忘了.

  10 一元一次不等式组的解集:

  大大取较大,小小取较小,小大、大小取中间,大小、小大无处找.

  一元二次不等式、一元一次绝对值不等式的解集:

  大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.

  11 分式混合运算法则:

  分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);

  乘法进行化简,因式分解在先,分子分母相约,然后再行运算;

  加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

  变号必须两处,结果要求最简.

  12 分式方程的解法步骤:

  同乘最简公分母,化成整式写清楚,

  求得解后须验根,原(根)留、增(根)舍,别含糊.

  13 最简根式的条件:

  最简根式三条件,号内不把分母含,

  幂指数(根指数)要互质、幂指比根指小一点.

  14 特殊点的坐标特征:

  坐标平面点(x,y),横在前来纵在后;

  (+,+),(-,+),(-,-)和(+,-),四个象限分前后;

  x轴上y为0,x为0在y轴.

  象限角的平分线:

  象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵却相反.

  平行某轴的直线:

  平行某轴的直线,点的坐标有讲究,

  直线平行x轴,纵坐标相等横不同;

  直线平行于y轴,点的横坐标仍照旧.

  15 对称点的坐标:

  对称点坐标要记牢,相反数位置莫混淆,

  x轴对称y相反,y轴对称x相反;

  原点对称最好记,横纵坐标全变号.

  16 自变量的取值范围:

  分式分母不为零,偶次根下负不行;

  零次幂底数不为零,整式、奇次根全能行.

  17 函数图象的移动规律:

  若把一次函数的解析式写成y=k(x+0)+b,

  二次函数的解析式写成y=a(x+h)2+k的形式,

  则可用下面的口诀

  “左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.

  18 一次函数的图象与性质的口诀:

  一次函数是直线,图象经过三象限;

  正比例函数更简单,经过原点一直线;

  两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,

  k为正来右上斜,x增减y增减;

  k为负来左下展,变化规律正相反;

  k的绝对值越大,线离横轴就越远.

  19 二次函数的图象与性质的口诀:

  二次函数抛物线,图象对称是关键;

  开口、顶点和交点,它们确定图象现;

  开口、大小由a断,c与y轴来相见;

  b的符号较特别,符号与a相关联;

  顶点位置先找见,y轴作为参考线;

  左同右异中为0,牢记心中莫混乱;

  顶点坐标最重要,一般式配方它就现;

  横标即为对称轴,纵标函数最值见.

  若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.

  20 反比例函数的图象与性质的口诀:

  反比例函数有特点,双曲线相背离得远;

  k为正,图在一、三(象)限,k为负,图在二、四(象)限;

  图在一、三函数减,两个分支分别减.

  图在二、四正相反,两个分支分别增;

  线越长越近轴,永远与轴不沾边.

  21 特殊三角函数值记忆:

  首先记住30度、45度、60度的正弦值、余弦值的分母都是2,

  正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.

  三角函数的增减性:正增余减

  22 平行四边形的判定:

  要证平行四边形,两个条件才能行,

  一证对边都相等,或证对边都平行,

  一组对边也可以,必须相等且平行.

  对角线,是个宝,互相平分“跑不了”,

  对角相等也有用,“两组对角”才能成.

  23 梯形问题的辅助线:

  移动梯形对角线,两腰之和成一线;

  平行移动一条腰,两腰同在“△”现;

  延长两腰交一点,“△”中有平行线;

  作出梯形两高线,矩形显示在眼前;

  已知腰上一中线,莫忘作出中位线.

  24 添加辅助线歌:

  辅助线,怎么添?找出规律是关键.

  题中若有角(平)分线,可向两边作垂线;

  线段垂直平分线,引向两端把线连;

  三角形边两中点,连接则成中位线;

  三角形中有中线,延长中线翻一番.

  25 圆的证明歌:

  圆的证明不算难,常把半径直径连;

  有弦可作弦心距,它定垂直平分弦;

  直径是圆最大弦,直圆周角立上边,

  它若垂直平分弦,垂径、射影响耳边;

  还有与圆有关角,勿忘相互有关联,

  圆周、圆心、弦切角,细找关系把线连.

  同弧圆周角相等,证题用它最多见,

  圆中若有弦切角,夹弧找到就好办;

  圆有内接四边形,对角互补记心间,

  外角等于内对角,四边形定内接圆;

  直角相对或共弦,试试加个辅助圆;

  若是证题打转转,四点共圆可解难;

  要想证明圆切线,垂直半径过外端,

  直线与圆有共点,证垂直来半径连,

  直线与圆未给点,需证半径作垂线;

  四边形有内切圆,对边和等是条件;

  如果遇到圆与圆,弄清位置很关键,

  两圆相切作公切,两圆相交连公弦.

4524851