学习啦 > 学习方法 > 高中学习方法 > 高一学习方法 > 高一数学 > 高一数学必修一函数及其表示的知识点分析

高一数学必修一函数及其表示的知识点分析

时间: 夏萍1132 分享

高一数学必修一函数及其表示的知识点分析

  在高一的时候,学生会学习比较基础的知识点,下面学习啦的小编将为大家带来高一数学关于函数及其表示的知识点的介绍,希望能够帮助到大家。

  高一数学必修一函数及其表示的知识点分析

  1.函数的定义

  设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB为从集合A到集合B的一个函数(function),记作:

  (),yfxxA

  其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fxxA叫值域(range)。显然,值域是集合B的子集。

  注意:

  ① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x. 2.构成函数的三要素 定义域、对应关系和值域。 3、映射的定义

  设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意

  一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从 集合A到集合B的一个映射。

  4. 区间及写法:

  设a、b是两个实数,且a

  (1) 满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];

  (2) 满足不等式axb的实数x的集合叫做开区间,表示为(a,b);

  5.函数的三种表示方法 ①解析法 ②列表法 ③图像法

  1. 函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(-x) ;

  (2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2. 复合函数的有关问题

  (1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3.函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;

  4.函数的周期性

  (1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;

  5.方程k=f(x)有解 k∈D(D为f(x)的值域);

  6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

  7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);

  (3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N ( a>0,a≠1,N>0 );

  8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

  11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

  12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

  13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

  高一上册数学集合与简易逻辑知识点

  一、理解集合中的有关概念

  (1)集合中元素的特征: 确定性 , 互异性 , 无序性 。

  集合元素的互异性:如: , ,求 ;

  (2)集合与元素的关系用符号 , 表示。

  (3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。

  (4)集合的表示法: 列举法 , 描述法 , 韦恩图 。 注意:区分集合中元素的形式:如: ; ; ; ; ; ;

  (5)空集是指不含任何元素的集合。( 、 和 的区别;0与三者间的关系) 空集是任何集合的子集,是任何非空集合的真子集。 注意:条件为 ,在讨论的时候不要遗忘了 的情况。 如: ,如果 ,求 的取值。

  二、集合间的关系及其运算

  (1)符号“ ”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ; 符号“ ”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。

  (2) ; ;

  (3)对于任意集合 ,则: ① ; ; ; ② ; ; ; ; ③ ; ;

  (4)①若 为偶数,则 ;若 为奇数,则 ; ②若 被3除余0,则 ;若 被3除余1,则 ;若 被3除余2,则 ;

  三、集合中元素的个数的计算:

  (1)若集合 中有 个元素,则集合 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。

  (2) 中元素的个数的计算公式为: ;

  (3)韦恩图的运用:

  四、 满足条件 ,

  满足条件 , 若 ;则 是 的充分非必要条件 ; 若 ;则 是 的必要非充分条件 ; 若 ;则 是 的充要条件 ; 若 ;则 是 的既非充分又非必要条件 ;

  五、原命题与逆否命题,

  否命题与逆命题具有相同的 ; 注意:“若 ,则 ”在解题中的运用, 如:“ ”是“ ”的 条件。

  六、反证法:

  当证明“若 ,则 ”感到困难时,改证它的等价命题“若 则 ”成立,

  步骤:

  1、假设结论反面成立;

  2、从这个假设出发,推理论证,得出矛盾;

  3、由矛盾判断假设不成立,从而肯定结论正确。

  矛盾的来源:

  1、与原命题的条件矛盾;

  2、导出与假设相矛盾的命题;

  3、导出一个恒假命题。

  适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时。

  正面词语 等于 大于 小于 是 都是 至多有一个 否定 正面词语 至少有一个 任意的 所有的 至多有n个 任意两个 否定


猜你感兴趣:

1.高中语文文言文的重要知识点分析

2.高中地理的学习的重要知识点分析

3.高二的物理易错的知识点分析介绍

4.高中生物的的知识点记忆规律分析

3784730