学习啦 > 学习方法 > 高中学习方法 > 高一学习方法 > 高一数学 > 高一数学复数的四则运算知识点分析

高一数学复数的四则运算知识点分析

时间: 夏萍1132 分享

高一数学复数的四则运算知识点分析

  高一的数学学习是很多学生比较头疼的一件事,下面是学习啦小编给大家带来的有关于高一数学的部分的知识点的总结介绍,希望能够帮助到大家。

  高一数学复数的四则运算知识点

  复数的概念:

  形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。

  复数的表示:

  复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。

  复数的几何意义:

  (1)复平面、实轴、虚轴:

  点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数

  (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即

  这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。

  这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。

  复数的模:

  复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=

  虚数单位i:

  (1)它的平方等于-1,即i2=-1;

  (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立

  (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。

  (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

  复数模的性质:

  复数与实数、虚数、纯虚数及0的关系:

  对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。

  复数集与其它数集之间的关系:

  复数的运算:

  1、复数z1与z2的和的定义:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;

  2、复数z1与z2的差的定义:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;

  3、复数的乘法运算规则:设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i,其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并,两个复数的积仍然是一个复数。

  4、复数的除法运算规则:

  。

  复数加法的几何意义:

  设

  为邻边画平行四边形

  就是复数

  对应的向量。

  复数减法的几何意义:

  复数减法是加法的逆运算,设

  ,则这两个复数的差

  对应,这就是复数减法的几何意义。

  共轭复数:

  当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。

  虚部不等于0的两个共轭复数也叫做共轭虚数。

  复数z=a+bi和

  =a-bi(a、b∈R)互为共轭复数。

  复数的运算律:

  1、复数的加法运算满足交换律:z1+z2=z2+z1;

  结合律:(z1+z2)+z3=z1+(z2+z3);

  2、减法同加法一样满足交换律、结合律。

  3、乘法运算律:(1)z1(z2z3)=(z1z2)z3;(2)z1(z2+z3)=z1z2+z1z3;(3)z1(z2+z3)=z1z2+z1z3

点击下页查看更多高一数学独立性检验的基本思想及其初步应用的知识点

3784550