高一数学必修五数列知识点
数列是以正整数集(或它的有限子集)为定义域的函数,是高一学生学习的重点,有哪些知识点要学习呢?下面是学习啦小编给大家带来的高一数学必修五数列知识点,希望对你有帮助。
高一数学必修五数列知识点
1.数列的函数理解:
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。
2.通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不唯一)。
数列通项公式的特点:
(1)有些数列的通项公式可以有不同形式,即不唯一。
(2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。
3.递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
数列递推公式特点:
(1)有些数列的递推公式可以有不同形式,即不唯一。
(2)有些数列没有递推公式。
有递推公式不一定有通项公式。
注:数列中的项必须是数,它可以是实数,也可以是复数。
高一数学必修五数列练习
1、ABC的三边a,b,c既成等比数列又成等差数列,则三角形的形状是( )
A.直角三角形 B.等腰三角形
C.等腰直角三角形 D.等边三角形
2、在等比数列{an}中,a6a5a7a548,则S10等于( )
A.1023 B.1024 C.511 D.512
3、三个数成等比数列,其积为1728,其和为38,则此三数为( )
A.3,12,48 B.4,16,27 C.8,12,18 D.4,12,36
4、一个三角形的三内角既成等差数列,又成等比数列,则三内角的公差等于( )
A.0 B.15 C.30 D.60
5、等差数列{an}中,a1,a2,a4恰好成等比数列,则a1的值是( ) a4
A.1 B.2 C.3 D.4
6、某种电讯产品自投放市场以来,经过三年降价,单价由原来的174元降到58元,这种电讯产品平均每次降价的百分率大约是( )
A.29% B.30% C.31% D.32%
7、若log4(x+2y)+log4(x-2y)=1,则∣x∣-∣y∣的最小值是 。
高一数学学习方法
(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
(2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
(3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。
(4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
(5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。
(6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。
(7)学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
(8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。
(9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。
看了<高一数学必修五数列知识点>的人还看了: