学习啦 > 学习方法 > 高中学习方法 > 高一学习方法 > 高一数学 > 高一数学教学案例:平行线判定定理(2)

高一数学教学案例:平行线判定定理(2)

时间: 若木631 分享

高一数学教学案例:平行线判定定理

七、教学过程设计

  (一)知识准备、新课引入

  提问1:根据公共点的情况,空间中直线a和平面有哪几种位置关系?并完成下表:(多媒体幻灯片演示)

  我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。

  [设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。]

  (二)判定定理的探求过程

  1、直观感知

  提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?

  生1:例举日光灯与天花板,树立的电线杆与墙面。

  生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。

  [学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。]

  2、动手实践

  教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。

  [设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。]

  3、探究思考

  (1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线 ②平面内一条直线 ③这两条直线平行

  (2)如果平面外的直线a与平面内的一条直线b平行,那么直线a与平面平行吗?

  4、归纳确认:(多媒体幻灯片演示)

  直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。温馨提示:

  作用:判定或证明线面平行。

  关键:在平面内找(或作)出一条直线与面外的直线平行。

  思想:空间问题转化为平面问题

  (三)定理运用,问题探究(多媒体幻灯片演示)

  1、想一想:

  (1)判断下列命题的真假?说明理由:

  ①如果一条直线不在平面内,则这条直线就与平面平行( )

  ②过直线外一点可以作无数个平面与这条直线平行( )

  ③一直线上有二个点到平面的距离相等,则这条直线与平面平行( )

  (2)若直线a与平面内无数条直线平行,则a与的位置关系是( )

  A、a || B、a C、a ||或a D、[学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的③学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。]

  2、做一做:

  设a、b是二异面直线,则过a、b外一点p且与a、b都平行的平面存在吗?若存在请画出平面,不存在说明理由?

  先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。

  [设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。]

  3、证一证:

  例(见课本60页例1):已知空间四边形ABCD中,E、F分别是AB、AD的中点,求证:EF || 平面BCD。

  变式一:空间四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA中点,连结EF、FG、GH、HE、AC、BD请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)

  变式二:在变式一的图中如作PQEF,使P点在线段AE上、Q点在线段FC上,连结PH、QG,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形EFGH、PQGH分别是怎样的四边形,说明理由。

  [设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]

  4、练一练:

  练习1:见课本6页练习1、2

  练习2:将两个全等的正方形ABCD和ABEF拼在一起,设M、N分别为AC、BF中点,求证:MN || 平面BCE。

  变式:若将练习2中M、N改为AC、BF分点且AM = FN,试问结论仍成立吗?试证之。

  [设计意图:设计这组练习,目的是为了巩固与深化定理的运用,特别是通过练习2及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。]

  (四)总结

  先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):

  1、线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。

  2、定理的符号表示:简述:(内外)线线平行则线面平行

  3、定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。

114850