高考数学复习:如何提高学生解题思维能力及选择题十大解法
高考数学复习:如何提高学生解题思维能力及选择题十大解法
导读:教书育人楷模,更好地指导自己的学习,让自己不断成长。让我们一起到学习啦一起学习吧!下面学习啦网的小编给你们带来了《高考数学复习:如何提高学生解题思维能力及选择题十大解法》供考生们参考。
高考备战:高考数学选择题10大解题法
高考备战:数学选择题是高考数学三大基本题型之一,一组高考数学选择题,只要备题充分的扬长避短,运用好群体效应,就能在较大的知识范围内,实现对基础知识、基本技能和基本的数学思想方法的全面考察。能比较确切地测试考生对概念、原理、性质、法则、定理和公式的理解和掌握程度,还能在一定程度上有效考察逻辑思维能力、运算能力、空间想象能力以及灵活和综合地运用数学知识解决问题的能力。2003年的高考数学试卷(全国卷)仍将有12个选择题,每题5分,共计60分,占总分150分的40%。而去年全国卷的难度为0.60,即平均分为90,而60分占90分的比例为三分之一。约67%。可见选择题的成功率对于全卷的成功来说多重要。从选择题的结构特征、命题方法可以寻找并总结出一些简捷巧妙的解法。
下面给出十种简捷巧妙的解法。供你参考。一、抓住特征,逆施倒行;二、火眼金睛,一眼洞穿;三、观察思考,估算判断;四、多思少算,特值判断;五、运动变化,巧用极端;六、数形结合,巧用直观;七、敢于排除,善于排除;八、注意平衡,巧用对称;九、等价转化,活用定义;十、巧用蕴含,果断排除。
以上十种方法,配合应用就可以使得选择填空题解答又快又准。比如,有些方程的解,我们可以翻过来用选择支代入验证,这就是逆向代入法,它比直接求解对号入座有时候要来得快。再比如估值法,某年一道高考题是说,一个正方体的表面积是a的平方,那么,它的外接球的表面积是:题目中给出了四个选择支,我们估计圆的表面积比它的内接正方体的表面积要大一些,但也大不到哪里去,有两个答案说,外接球的表面积,分别是正方体表面积的六倍多和九倍多,显然应该排除另一个选择支,所求的表面积是正方体表面积的1.01倍,显然,也不对。而剩下的一个选择支,球的表面积是正方体表面积的1.57倍,显然,它就应该是正确的选择题。我们这里只是对球的表面积进行了估算,就可以得到正确结果,还有许多高考选择填空题都可以用近似计算和估算的方法进行解答,估算也是一种能力,考试中心在命题的时候,特别提到提倡运用估值判断的方法。不用这样的方法,费时较多,用上这样的方法,简洁明快,它可以把不同层次的考生区别开来。
高考数学复习:如何提高学生解题思维能力
纵观近几年高考数学试题,可以看出高考数学试题加强了对知识点灵活应用的考察。这就对考生的思维能力要求大大加强。如何才能提升思维能力,很多考生便依靠题海战术,寄希望多做题来应对多变的考题,然而凭借题海战术的功底仍然难以获得科学的思维方式,以至收效甚微。最主要的原因就是解题思路随意造成的,并非所谓不够用功等原因。由于思维能力的原因,考生在解答高考题时形成一定的障碍。主要表现在两个方面,一是无法找到解题的切入点,二是虽然找到解题的突破口,但做着做着就走不下去了。如何解决这两大障碍呢?
第一,从求解(证)入手寻找解题途径的基本方法
遇到有一定难度的考题我们会发现出题者设置了种种障碍。从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,必须要做什么,找到需知后,将需知作为新的问题,直到与已知所能获得的可知相沟通,将问题解决。事实上,在不等式证明中采用的分析法就是这种思维的充分体现,我们将这种思维称为逆向思维必要性思维。
第二,数学式子变形完成解题过程的关键
解答高考数学试题遇到的第二障碍就是数学式子变形。一道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的,很多考生都有这样的经历,在解一道复杂的考题时,做不下去了,而回过头来再看一看答案,才恍然大悟,解法这么简单,后悔莫及,埋怨自己怎么糊涂到没有把式子再这么变一下呢?
其实数学解题的每一步推理和运算,实质都是转换(变形).但是,转换(变形)的目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体,化未知为已知,也就是创造条件向有利于解题的方向转化.还必须注意的是,一切转换必须是等价的,否则解答将出现错误。解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。寻找差异是变形依赖的原则,变形中一些规律性的东西需要总结。在后面的几章中我们列举的一些思维定势,就是在数学思想指导下总结出来的。在解答高考题中时刻都在进行数学变形由复杂到简单,这也就是转化,数学式子变形的思维方式:时刻关注所求与已知的差异。
第三、回归课本---夯实基础。
1)揭示规律----掌握解题方法
高考试题再难也逃不了课本揭示的思维方法及规律。我们说回归课本,不是简单的梳理知识点。课本中定理,公式推证的过程就蕴含着重要的方法,而很多考生没有充分暴露思维过程,没有发觉其内在思维的规律就去解题,而希望通过题海战术去悟出某些道理,结果是题海没少泡,却总也不见成效,最终只能留在理解的肤浅,仅会机械的模仿,思维水平低的地方。因此我们要侧重基本概念,基本理论的剖析,达到以不变应万变。
2)构建网络----融会贯通
在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,最后造成记忆不牢,考试时失分。
例如:若f(x+a)=f(b-x)则f(x)关于对称。如何理解?我们令x1=a+x,x2=b-x,则f(x1)=f(x2),x1+x2=a+b,=常数,即两自变量之和是定值,它们对应的函数值相等,这样就理解了对称的本质。结合解析几何中的中点坐标的横坐标为定值,或用特殊函数,二次函数的图像,记忆这个结论就很简单了,只要x1+x2=a+b,=常数f(x1)=f(x2),它可以写成许多形式如f(x)=f(a+b-x).同样关于点对称,则f(x1)+f(x2)=b,x1+x2=a(中点坐标横纵座标都为定值),关于(a/2,b/2)对称,再如若f(x)=f(2a-x),f(x)=(2b-x),则f(x)的周期为T=2|a-b||如何理解记忆这个结论,我们类比三角函数f(x)=sinx从正弦函数图形中我们可知x=/2,x=3/2为两个对称轴,2|3/2-/2|=2,而得周期为,这样我们就很容易记住这一结论,即使在考场上,思维断路,只要把图一画,就可写出这一结论。这就是抽象到具体与数形结合的思想的体现。思想提炼总结在复习过程中起着关键作用。类似的结论f(x)关于点A(a,0)及B(b,0)对称则f(x)周期T=2|b-a|,若f(x)关于A(a,0)及x=b对称,则f(x)周期T=4|b-a|,
这样我们就在函数这章做到由厚到薄,无需死记什么内容了,同时我们还要学会这些结论的逆用。例:两对称轴x=a,x=b当b=2a(ba)则为偶函数.同样以对称点B(B,0),对称轴X=a,b=2a是为奇函数.
3)加强理解----提升能力
复习要真正的回到重视基础的轨道上来。没有基础谈不到不到能力。这里的基础不是指机械重复的训练,而是指要搞清基本原理,基本方法,体验知识形成过程以及对知识本质意义的理解与感悟。只有深刻理解概念,才能抓住问题本质,构建知识网络。
4)思维模式化----解题步骤固定化
解答数学试题有一定的规律可循,解题操作要有明确的思路和目标,要做到思维模式化。所谓模式化也就是解题步骤固定化,一般思维过程分为以下步骤:
A、审题
审题的关键是,首先弄清要求(证)的是什么?已知条件是什么?结论是什么?条件的表达方式是否能转换(数形转换,符号与图形的转换,文字表达转为数学表达等),所给图形和式子有什么特点?能否用一个图形(几何的、函数的或示意的)或数学式子(对文字题)将问题表达出来?有什么隐含条件?由已知条件能推得哪些可知事项和条件?要求未知结论,必须做什么?需要知道哪些条件(需知)?
B、明确解题目标.关注已知与所求的差距,进行数学式子变形(转化),在需知与可知间架桥(缺什么补什么)
1)能否将题中复杂的式子化简?
2)能否对条件进行划分,将大问题化为几个小问题?
3)能否进行变量替换(换元)、恒等变换,将问题的形式变得较为明显一些?
4)能否代数式子几何变换(数形结合)?利用几何方法来解代数问题?或利用代数(解析)方法来解几何问题?数学语言能否转换?(向量表达转为解几表达等)
5)最终目的:将未知转化为已知。
C、求解要求解答清楚,简洁,正确,推理严密,运算准确,不跳步骤;表达规范,步骤完整
分析思维和解题思维,可归纳总结为:目标分析,条件分析,差异分析,结构分析,逆向思维,减元,直观,特殊转化,主元转化,换元转化