学习啦 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学 > 高考数学解析几何公式大全+重难点总结

高考数学解析几何公式大全+重难点总结

时间: 惠敏1218 分享

高考数学解析几何公式大全+重难点总结

  导读:教书育人楷模,更好地指导自己的学习,让自己不断成长。让我们一起到学习啦一起学习吧!下面学习啦网的小编给你们带来了高三数学学习方法文章《高考数学解析几何公式大全+重难点总结》供考生们参考。

  高考数学重点难点总结

  夯实基础知识,形成知识的纵横联系的网络。突出主干知识,重视思想方法的渗透和运用,这些始终是高考的主旋律。今年高考数学试题仍然会坚持知识面广,起点低,坡度缓,难度适中,分题分层把关的特点;会继续坚持较高区分度,能体现出不同考生对基本概念掌握的层次。众所周知,高考中造成失分的祸首总是基础知识掌握不牢,相当一部分学生数学公式记不熟,记不准,记不全,解题时选择公式不恰当。相当一部分学生对概念的理解只停留在表面上,其内涵是什么,适用范围是什么,怎样表达,举例说明,举反例否定往往做不到。又特别要注意对薄弱环节的复习,知识是一环扣一环的,某一环节薄弱会影响整个知识链条,就像木桶盛水的多少取决于最短的木板,而高考失分最多的是由薄弱环节造成的。因为一道数学题是由多个知识点组合而成的,其中一个知识点出了偏差就可能导致“满盘皆输”。

  因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:

  1.函数

  函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性(奇偶性、单调性、周期性、对称性)与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。

  2.三角函数

  三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。

  3.立体几何

  承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。

  4.数列与极限

  数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。

  5.解析几何

  直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。

  高考数学解析几何公式大全

  1、直线

  两点距离、定比分点 直线方程

  |AB|=| |

  |P1P2|=

  y-y1=k(x-x1)

  y=kx+b

  两直线的位置关系 夹角和距离

  或k1=k2,且b1≠b2

  l1与l2重合

  或k1=k2且b1=b2

  l1与l2相交

  或k1≠k2

  l2⊥l2

  或k1k2=-1 l1到l2的角

  l1与l2的夹角

  点到直线的距离

  2.圆锥曲线

  圆 椭圆

  标准方程(x-a)2+(y-b)2=r2

  圆心为(a,b),半径为R

  一般方程x2+y2+Dx+Ey+F=0

  其中圆心为( ),

  半径r

  (1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系

  (2)两圆的位置关系用圆心距d与半径和与差判断 椭圆

  焦点F1(-c,0),F2(c,0)

  (b2=a2-c2)

  离心率

  准线方程

  焦半径|MF1|=a+ex0,|MF2|=a-ex0

  双曲线 抛物线

  双曲线

  焦点F1(-c,0),F2(c,0)

  (a,b>0,b2=c2-a2)

  离心率

  准线方程

  焦半径|MF1|=ex0+a,|MF2|=ex0-a抛物线y2=2px(p>0)

  焦点F

  准线方程

  坐标轴的平移

  这里(h,k)是新坐标系的原点在原坐标系中的坐标。

4507164