学习啦>学习方法>高中学习方法>高三学习方法>高三数学>

高考数学攻略:几招教你搞定填空题!

时间: 惠敏1218 分享

  导读:教书育人楷模,更好地指导自己的学习,让自己不断成长。让我们一起到学习啦一起学习吧!下面学习啦网的小编给你们带来了高三语文学习方法文章《高考数学攻略:几招教你搞定填空题!》供考生们参考。

  高考数学:一个故事让你理解罗素悖论

  在某个城市中有一位理发师,他的广告词是这样写的:本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于不给自己刮脸的人,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于给自己刮脸的人,他就不该给自己刮脸。

  理发师悖论与罗素悖论是等价的:如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是城里不属于自身的那些集合,并且城里所有不属于自身的集合都属于他。那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论。反过来的变换也是成立的。

  所以罗素悖论用数学式表达是这样子的:设性质P(x)表示x不属于A,现假设由性质P确定了一个类A也就是说A={x|x?A}。那么问题是:A属于A是否成立?首先,若A属于A,则A是A的元素,那么A具有性质P,由性质P知A不属于A;其次,若A不属于A,也就是说A具有性质P,而A是由所有具有性质P的类组成的,所以A属于A。

  几招教你轻松搞定高考数学填空题

  数学填空题只要求写出结果,不要求写出计算和推理过程,其结果必须是数值准确、形式规范、表达式(数)最简.填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题.解题时,要有合理地分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整.合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求.

  数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断.求解填空题的基本策略是要在准、巧、快上下功夫.常用的方法有直接法、特殊化法、数形结合法、等价转化法等.

  方法一、直接法

  直接法就是从题设条件出发,运用定义、定理、公式、性质等,通过变形、推理、运算等过程,直接得出正确结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法.

  适用范围:对于计算型的试题,多通过计算求结果.

  方法点津:直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.

  方法二、特殊值法

  当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数、特殊角、特殊数列、特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论.为保证答案的正确性,在利用此方法时,一般应多取几个特例.

  适用范围:求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.

  方法点津:

  填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值是适用此法的前提条件.

  方法三、数形结合法

  对于一些含有几何背景的填空题,若能以数辅形,以形助数,则往往可以借助图形的直观性,迅速作出判断,简捷地解决问题,得出正确的结果,如Venn图、三角函数线、函数的图象及方程的曲线、函数的零点等.

  适用范围:图解法是研究求解问题中含有几何意义命题的主要方法,解题时既要考虑图形的直观,还要考虑数的运算.

  方法点津:

  图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.

  方法四、构造法

  构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型(如构造函数、方程或图形),从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.

  方法点津:构造法实质上是化归与转化思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.本题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决.

高考数学攻略:几招教你搞定填空题!

导读:教书育人楷模,更好地指导自己的学习,让自己不断成长。让我们一起到学习啦一起学习吧!下面学习啦网的小编给你们带来了高三语文学习方法文章《高考数学攻略:几招教你搞定填空题
推荐度:
点击下载文档文档为doc格式

精选文章

4507031