学习啦>学习方法>高中学习方法>高三学习方法>高三数学>

高中数学得分的技巧和注意的方面

时间: 夏萍1132 分享

  想要学好数学学生需要注意的方面比较的多,下面学习啦的小编将为大家带来高中数学得分的技巧介绍,希望能够帮助到大家。

  高中数学得分的技巧

  1.特值检验法

  对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

  例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为

  A.-5/4

  B.-4/5

  C.4/5

  D.2√5/5

  解 析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的 画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故 选B。

  2.极端性原则

  将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

  3.剔除法

  利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

  4.数形结合法

  由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

  5.递推归纳法

  通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

  6.顺推破解法

  利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

  7.逆推验证法

  将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

  8.正难则反法

  从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

  9.特征分析法

  对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。例:256-1可能被120和130之间的两个数所整除,这两个数是:

  A.123,125

  B.125,127

  C.127,129

  D.125,127

  解析:初中的平方差公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故选C。

  10.估值选择法

  有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

  高中数学学好要注意的方面

  1.核心概念

  注重对概念的考察是北京高考数学试题的特色。依据考试说明及试题特点,以下几个方面的概念是复习中应特别关注的:

  (1)充要条件;

  (2)函数:函数的本质、表示、函数的性质(主要是单调性)、函数观点等;

  (3)数列:函数的观点(定义域可数的函数)、归纳地推雨归纳猜想、等差(比)数列的概念;

  (4)概率与统计:随机事件、加法及乘法公式、古典(几何)概型、用样本估计总体等;

  (5)几何有关的概念:三视图、空间角、线性规划、直线与圆、圆锥曲线的定义和性质等。

  2.核心思维

  (1)极端原理;

  (2)运动变化的观点;

  (3)试验、猜想;

  (4)构造;

  (5)正难则反等。

  3.核心方法

  (1)配方法、待定系数法、换元法、作函数图象的方法、求最大(小)值得方法;

  (2)正弦型函数的图像和性质、正余弦定理的应用;

  (3)空间几何元素平行垂直的证明、利用空间向量求空间角的方法;

  (4)概率的求法、用样本估计总体的方法;??

  (5)导数的应用、函数的应用:解决方程(零点)、不等式问题的方法;

  (6)解析法解决圆锥曲线的问题。

  高中数学学习的技巧

  1.学习被动。许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权,没有真正理解所学内容。在初中的数学教学中,教师讲解详细,常把许多问题的解决建立为固定的思维模式,而且各类题型反复练习,学生渐渐养成了“依葫芦画瓢”的抄录式的学习方法。而高中数学要求学生勤于思考,善于思考,掌握数学思想方法,善于归纳总结规律,在思维的灵活性、可延伸性、创造性方面提出了较高的要求。但学生的思维能力的发展和思维方式的转换有一个循序渐进的过程,这就给高一数学的学习形成了思维障碍。

  2.学不得法。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

  3.基础重视不够。知识是能力的基础,要切实抓好基础知识的学习。数学基础知识学习包括概念学习、定理公式学习以及解题学习三个方面,一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。

  4.进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃,这就要求必须掌握基础知识与技能为进一步学习做好准备。高中数学很多地方难度大、方法新、分析能力要求高,如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。


猜你感兴趣:

1.学好高中数学的注意事项及建议

2.提高高中数学做题速度的六大技巧

3.提高高中数学做题速度的技巧总结

4.改善高中数学做题慢的几个技巧

5.高中数学学习方法及答题技巧

6.高中数学学习方法技巧

3787309