学习啦 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学 > 高考数学柯西不等式知识点总结

高考数学柯西不等式知识点总结

时间: 凤婷983 分享

高考数学柯西不等式知识点总结

  柯西不等式和排序不等式是两个非常重要的不等式,它们在高等数学中的应用很普遍。下面学习啦小编给大家带来高考数学柯西不等式知识点,希望对你有帮助。

  高考数学柯西不等式知识点(一)

  所谓柯西不等式是指:设ai,bi∈R(i=1,2…,n,),则(a1b1+a2b2+…anbn)2≤(a12+a22+…+an2)(b12+b22+…+bn2),等号当且仅当==…=时成立。

  柯西不等式证法:

  柯西不等式的一般证法有以下几种:

  (1)柯西不等式的形式化写法就是:记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2.

  我们令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)

  则我们知道恒有 f(x) ≥ 0.

  用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.

  于是移项得到结论。

  (2)用向量来证.

  m=(a1,a2......an) n=(b1,b2......bn)

  mn=a1b1+a2b2+......+anbn=(a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+......+bn^2)^(1/2)乘以cosX.

  因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+.....+bn^2)^(1/2)

  这就证明了不等式.

  柯西不等式还有很多种,这里只取两种较常用的证法.

  柯西不等式应用:

  可在证明不等式,解三角形相关问题,求函数最值,解方程等问题的方面得到应用。

  巧拆常数:

  例:设a、b、c 为正数且各不相等。

  求证: 2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)

  分析:∵a 、b 、c 均为正数

  ∴为证结论正确只需证:2*(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9

  而2(a+b+c)=(a+b)+(a+c)+(c+b)

  又 9=(1+1+1)(1+1+1)

  证明:Θ2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)(1+1+1)=9

  又 a、b 、c 各不相等,故等号不能成立

  ∴原不等式成立。

  像这样的例子还有很多,词条里不再一一列举,大家可以在参考资料里找到柯西不等式的证明及应用的具体文献.

  柯西简介:

  1789年8月21日生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。

  他在纯数学和应用数学的功力是相当深厚的,很多数学的定理和公式也都以他的名字来称呼,如柯西不等式、柯西积分公式...在数学写作上,他是被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,其中有些还是经典之作,不过并不是他所有的创作质量都很高,因此他还曾被人批评高产而轻率,这点倒是与数学王子相反,据说,法国科学院''会刊''创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页,所以,柯西较长的论文只得投稿到其他地方。

  柯西在代数学、几何学、误差理论以及天体力学、光学、弹性力学诸方面都有出色的工作。特别是,他弄清了弹性理论的基本数学结构,为弹性力学奠定了严格的理论基础。

  高考数学柯西不等式知识点(二)

  一、一般形式

  (∑(ai))(∑(bi)) ≥ (∑ai·bi)

  等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。

  一般形式的证明

  (∑(ai^2))(∑(bi^2)) ≥ (∑ai·bi) ^2

  证明:

  等式左边=(ai·bj+aj·bi)+.................... 共n2 /2项

  等式右边=(ai·bi)·(aj·bj)+(aj·bj)·(ai·bi)+...................共n2 /2项

  用均值不等式容易证明 等式左边≥等式右边 得证

  二、向量形式

  |α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,...,bn)(n∈N,n≥2)

  等号成立条件:β为零向量,或α=λβ(λ∈R)。

  向量形式的证明

  令m=(a1,a2,…,an),n=(b1,b2,…,bn)  m·n=a1b1+a2b2+…+anbn=|m||n|cos<<b>m,n>=√(a1+a2+…+an) ×√(b1+b2+…+bn) ×cos<<b>m,n>  ∵cos<<b>m,n>≤1  ∴a1b1+a2b2+…+anbn≤√(a1+a2+…+an) ×√(b1+b2+…+bn)  注:“√”表示平方根。

  高考数学得分技巧

  在三门主科中,只有数学最容易拉开距离,也最为同学、家长所关心。由于高考的特殊性,有些同学在考试开始的前5分钟就已乱了方寸,导致谁都不希望的结果。

  1.做好前面5个小题。不要小看这几个小题,对稳定情绪,鼓舞士气有很大作用。有些同学就是由于前面个别小题做得不顺,影响整个考试情绪。而一旦前面发挥得好,会感到一路顺手,所向披靡。

  2.认真审题。由于前面题目简单,想抓紧时间做完,以便腾出时间做后面的难题,结果把题目看错了,非常可惜。如2000年上海卷第1题就有不少同学犯这种低级错误。

  3.确实遇到暂时不会做的题目,可以放一放,但很多同学做不到。担心前面就有不会做,后面肯定更难,从而心慌手抖,头脑一片空白。

  要知道难易对大家都一样,你不会别人可能也不会。遇到暂时不会做的题目要敢于“合理放弃”,必要时你可以抬头看看,周围的人还在做这道难题,让他们浪费时间吧,我去做会做的题目。这种心理暗示会减少你的压力,等会做的做完了,状态很好,势如破竹,再回过来,有时一看就会了,这就能使你出色发挥。

  4.对多数同学而言,最后两题的最后一问是“用不着”做的,如果前面不细心失误而把时间放攻难题上是得不偿失,犯了策略性错误。

  5.心理素质不太好的同学,不一定要先看整个试卷,因为遇到难题会紧张。


猜你感兴趣:

1.高中数学教师工作计划范文3篇

2.高考数学不等式知识点总结

3.高考数学正弦定理知识点总结

4.高三数学二项分布知识点

5.高考数学柯西不等式知识点总结

6.高一数学必修5不等式知识点总结

2418900