学习啦 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学 > 2017年高考数学判断函数值域的方法

2017年高考数学判断函数值域的方法

时间: 舒雯911 分享

2017年高考数学判断函数值域的方法

  在高中函数定义中,是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合以下是学习啦小编为您整理的关于2017年高考数学判断函数值域的方法的相关资料,希望对您有所帮助。

  高中数学知识点:常见函数值域

  y=kx+b(k≠0)的值域为R

  y=k/x的值域为(-∞,0)∪(0,+∞)

  y=√x的值域为x≥0

  y=ax?+bx+c当a>0时,值域为 [4ac-b?/4a,+∞) ;

  当a<0时,值域为(-∞,4ac-b?/4a]

  高中数学知识点:判断函数值域的方法

  1、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。

  2、换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_√cx-d(a,b,c,d均为常数且ac不等于0)的函数常用此法求解。

  3、判别式法:若函数为分式结构,且分母中含有未知数x?,则常用此法。通常去掉分母转化为一元二次方程,再由判别式△≥0,确定y的范围,即原函数的值域

  4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。

  5、反函数法:若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的特点,确定原函数的值域,如y=cx+d/ax+b(a≠0)型函数的值域,可采用反函数法,也可用分离常数法。

  6、单调性法:首先确定函数的定义域,然后在根据其单调性求函数值域,常用到函数y=x+p/x(p>0)的单调性:增区间为(-∞,-√p)的左开右闭区间和(√p,+∞)的左闭右开区间,减区间为(-√p,0)和(0,√p)

  7、数形结合法:分析函数解析式表达的集合意义,根据其图像特点确定值域。

  高中数学知识点:求函数值域的12种方法

  一、观察法

  通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

  例1求函数y=3+√(2-3x) 的值域。

  点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。

  解:由算术平方根的性质,知√(2-3x)≥0,

  故3+√(2-3x)≥3。

  ∴函数的知域为 .

  点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

  本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

  练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5})

  二、反函数法

  当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

  例2求函数y=(x+1)/(x+2)的值域。

  点拨:先求出原函数的反函数,再求出其定义域。

  解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

  点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

  练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1})

  三、配方法

  当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域

  例3:求函数y=√(-x2+x+2)的值域。

  点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

  解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]

  ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]

  点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。

  练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})

  四、判别式法

  若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

  例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。

  点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

  解:将上式化为(y-2)x2-(y-2)x+(y-3)=0     (*)

  当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2

  当y=2时,方程(*)无解。∴函数的值域为2

  点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。

  练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。

  五、最值法

  对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。

  例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。

  点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。

  解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),

  ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。

  当x=-1时,z=-5;当x=3/2时,z=15/4。

  ∴函数z的值域为{z∣-5≤z≤15/4}。

  点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。

  练习:若√x为实数,则函数y=x2+3x-5的值域为        ( )

  A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞)

  (答案:D)。

  六、图象法

  通过观察函数的图象,运用数形结合的方法得到函数的值域。

  例6求函数y=∣x+1∣+√(x-2)2 的值域。

  点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。

  解:原函数化为 -2x+1 (x≤1)

  y= 3 (-1

  2x-1(x>2)

  它的图象如图所示。

  显然函数值y≥3,所以,函数值域[3,+∞]。

  点评:分段函数应注意函数的端点。利用函数的图象

  求函数的值域,体现数形结合的思想。是解决问题的重要方法。

  求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。

  七、单调法

  利用函数在给定的区间上的单调递增或单调递减求值域。

  例1求函数y=4x-√1-3x(x≤1/3)的值域。

  点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。

  解:设f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x-√1-3x

  在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}。

  点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。

  练习:求函数y=3+√4-x 的值域。(答案:{y|y≥3})

  八、换元法

  以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。

  例2求函数y=x-3+√2x+1 的值域。

  点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。

  解:设t=√2x+1 (t≥0),则

  x=1/2(t2-1)。

  于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.

  所以,原函数的值域为{y|y≥-7/2}。

  点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。

  练习:求函数y=√x-1 –x的值域。(答案:{y|y≤-3/4}

  九、构造法

  根据函数的结构特征,赋予几何图形,数形结合。

  例3求函数y=√x2+4x+5+√x2-4x+8 的值域。

  点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。

  解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22

  作一个长为4、宽为3的矩形ABCD,再切割成12个单位

  正方形。设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22 ,

  KC=√(x+2)2+1 。

  由三角形三边关系知,AK+KC≥AC=5。当A、K、C三点共

  线时取等号。

  ∴原函数的知域为{y|y≥5}。

  点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。

  练习:求函数y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2})

  十、比例法

  对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。

  例4已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。

  点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。

  解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)

  ∴x=3+4k,y=1+3k,

  ∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。

  当k=-3/5时,x=3/5,y=-4/5时,zmin=1。

  函数的值域为{z|z≥1}.

  点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。

  练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1})

  十一、利用多项式的除法

  例5求函数y=(3x+2)/(x+1)的值域。

  点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和

  解:y=(3x+2)/(x+1)=3-1/(x+1)。

  ∵1/(x+1)≠0,故y≠3。

  ∴函数y的值域为y≠3的一切实数。

  点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。

  练习:求函数y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2)

  十二、不等式法

  例6求函数Y=3x/(3x+1)的值域。

  点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式。

  解:易求得原函数的反函数为y=log3[x/(1-x)],

  由对数函数的定义知 x/(1-x)>0

  1-x≠0

  解得,0

  ∴函数的值域(0,1)。

  点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域。不等式法是重要的解题工具,它的应用非常广泛。是数学解题的方法之一。

  以下供练习选用:求下列函数的值域

  1.Y=√(15-4x)+2x-5;({y|y≤3})

  2.Y=2x/(2x-1)。 (y>1或y<0)

2017年高考数学判断函数值域的方法相关文章:

1.2016年高考数学复习利用函数图像解题技巧

2.高考数学函数的定义域和值域复习试题(含答案)

3.2017高三文科学习方法

4.2016年高考数学三角函数复习总结

5.2017高一数学教学工作计划

2036320