学习啦 > 学习方法 > 高中学习方法 > 高二学习方法 > 高二数学 > 高二数学导数知识点总结

高二数学导数知识点总结

时间: 凤婷983 分享

高二数学导数知识点总结

  导数作为研究函数的重要工具,也是进一步学习高二数学的基础,因此同学们需要掌握导数的重要知识点。下面学习啦小编带来高二数学导数知识点,欢迎阅读!

  高二数学导数知识点

  1. 求函数的单调性:

  利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导, (1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数; (2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数; (3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

  利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x); ③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

  反过来, 也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围): 设函数yf(x)在区间(a,b)内可导,

  (1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

  (2) 如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

  (3) 如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。 2. 求函数的极值:

  设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

  可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

  (1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的

  变化情况:

  (4)检查f(x)的符号并由表格判断极值。 3. 求函数的最大值与最小值:

  如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的最大值。函数在定义域内的极值不一定唯一,但在定义域内的最值是唯一的。

  求函数f(x)在区间[a,b]上的最大值和最小值的步骤: (1)求f(x)在区间(a,b)上的极值;

  (2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值。

  4. 解决不等式的有关问题:

  (1)不等式恒成立问题(绝对不等式问题)可考虑值域。

  f(x)(xA)的值域是[a,b]时,

  不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

  f(x)(xA)的值域是(a,b)时,

  不等式f(x)0恒成立的充要条件是b0; 不等式f(x)0恒成立的充要条件是a0。

  (2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

  5. 导数在实际生活中的应用:

  实际生活求解最大(小)值问题,通常都可转化为函数的最值. 在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,在解题时要加以说明。

  高二数学导数考点

  考点一:求导公式。

  例1. f(x)是f(x)13x2x1的导函数,则f(1)的值是 3

  考点二:导数的几何意义。

  例2. 已知函数yf(x)的图象在点M(1,f(1))处的切线方程是y

  1x2,则f(1)f(1) 2

  ,3)处的切线方程是 例3.曲线yx32x24x2在点(1

  点评:以上两小题均是对导数的几何意义的考查。

  考点三:导数的几何意义的应用。

  例4.已知曲线C:yx33x22x,直线l:ykx,且直线l与曲线C相切于点x0,y0x00,求直线l的方程及切点坐标。

  点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。

  考点四:函数的单调性。

  例5.已知fxax3xx1在R上是减函数,求a的取值范围。 32

  点评:本题考查导数在函数单调性中的应用。对于高次函数单调性问题,要有求导意识。

  考点五:函数的极值。

  例6. 设函数f(x)2x33ax23bx8c在x1及x2时取得极值。

  (1)求a、b的值;

  (2)若对于任意的x[0,3],都有f(x)c2成立,求c的取值范围。

  点评:本题考查利用导数求函数的极值。求可导函数fx的极值步骤:

  ①求导数f'x;

  ②求f'x0的根;③将f'x0的根在数轴上标出,得出单调区间,由f'x在各区间上取值的正负可确定并求出函数fx的极值。

  考点六:函数的最值。

  例7. 已知a为实数,fxx24xa。求导数f'x;(2)若f'10,求fx在区间2,2上的最大值和最小值。

  点评:本题考查可导函数最值的求法。求可导函数fx在区间a,b上的最值,要先求出函数fx在区间a,b上的极值,然后与fa和fb进行比较,从而得出函数的最大最小值。

  考点七:导数的综合性问题。

  例8. 设函数f(x)ax3bxc(a0)为奇函数,其图象在点(1,f(1))处的切线与直线x6y70垂直,导函数

  (1)求a,b,c的值; f'(x)的最小值为12。

  (2)求函数f(x)的单调递增区间,并求函数f(x)在[1,3]上的最大值和最小值。

  点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。

  高二数学导数公式

  1.①

  ②

  ③

  2. 原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y'=1/x'.

  3. 复合函数的导数:

  复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。

  4. 变现积分的求导法则:

  (a(x),b(x)为子函数)

  导数的计算

  计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。

  导数的求导法则

  求导法则

  由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

  求导的线性性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。

  两个函数的乘积的导函数,一导乘二+一乘二导。

  两个函数的商的导函数也是一个分式。(子导乘母-子乘母导)除以母平方

  复合函数的求导法则

  如果有复合函数,那么若要求某个函数在某一点的导数,可以先运用以上方法求出这个函数的导函数,再看导函数在这一点的值。

  高阶求导

  高阶导数的求法

  1.直接法:由高阶导数的定义逐步求高阶导数。

  一般用来寻找解题方法。

  2.高阶导数的运算法则:

  (二项式定理)

  3.间接法:利用已知的高阶导数公式,通过四则运算,变量代换等方法。

  注意:代换后函数要便于求,尽量靠拢已知公式求出阶导数。


猜你感兴趣:

1.高二文科数学导数公式知识点归纳

2.高二数学导数知识点

3.高二数学导数相关知识点

4.高二数学2-2导数的定义知识点归纳

5.浙江高二数学导数与函数的性质知识点整理

6.2017高二数学会考知识点总结

2602461