学习啦>学习方法>高中学习方法>高二学习方法>高二数学>

必修4数学平面向量的基本定理及坐标表示

时间: 凤婷983 分享

  平面向量作为一种基本的数学工具,既有用坐标表示,又有几何表示,在不少数学问题求解中都有着极其重要的地位与作用。下面是学习啦小编给大家带来的必修4数学平面向量的基本定理及坐标表示,希望对你有帮助。

  数学平面向量的基本定理及坐标表示

  1.两个向量的夹角

  (1)定义

  已知两个非零向量a和b,作=a,=b,则AOB=θ叫做向量a与b的夹角.

  (2)范围

  向量夹角θ的范围是[0,π],a与b同向时,夹角θ=0;a与b反向时,夹角θ=π.

  (3)向量垂直

  如果向量a与b的夹角是,则a与b垂直,记作ab.

  2.平面向量基本定理及坐标表示

  (1)平面向量基本定理:

  如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.

  其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.

  (2)平面向量的坐标表示:

  在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底,对于平面内的一个向量a,有且只有一对实数x,y,使a=xi+yj,把有序数对(x,y)叫做向量a的坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.

  设=xi+yj,则向量的坐标(x,y)就是A点的坐标,即若=(x,y),则A点坐标为(x,y),反之亦成立.(O是坐标原点)

  [探究] 1.向量的坐标与点的坐标有何不同?

  提示:向量的坐标与点的坐标有所不同,相等向量的坐标是相同的,但起点、终点的坐标却可以不同,以原点O为起点的向量的坐标与点A的坐标相同.

  3.平面向量的坐标运算

  (1)若a=(x1,y1),b=(x2,y2),则a±b=(x1±x2,y1±y2);

  (2)若A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1);

  (3)若a=(x,y),则λa=(λx,λy);

  (4)若a=(x1,y1),b=(x2,y2),则ab?x1y2=x2y1.

必修4数学平面向量的基本定理及坐标表示

平面向量作为一种基本的数学工具,既有用坐标表示,又有几何表示,在不少数学问题求解中都有着极其重要的地位与作用。下面是学习啦小编给大家带来的必修4数学平面向量的基本定理及坐标表示,希望对你有帮助。 数学平面向量的基本定理及坐标
推荐度:
点击下载文档文档为doc格式

精选文章

  • 高二数学平面向量学习要求
    高二数学平面向量学习要求

    高中是人生中的关键阶段,高二学习数学,起到一个承上启下的作用,下面是学习啦小编给大家带来的高二数学平面向量学习要求,希望对你有帮助。 1.高

  • 高中数学必修4平面向量的综合应用考点
    高中数学必修4平面向量的综合应用考点

    平面向量是新教材新增添的一部分内容,在中学数学内容中有其独特的价值。下面是学习啦小编给大家带来的高中数学必修4平面向量的综合应用考点,希望

  • 高中必修4数学知识点平面向量相关知识点
    高中必修4数学知识点平面向量相关知识点

    数学在科学发展和现代生活生产中的应用非常广泛,下面是学习啦小编给大家带来的高中必修4数学知识点平面向量相关知识点,希望对你有帮助。 高中数

  • 高中生数学必修4三角函数的图象与性质知识点
    高中生数学必修4三角函数的图象与性质知识点

    三角函数的图象和性质是高考的传统必考内容,也是每年高考的热点。下面是学习啦小编给大家带来的高中生数学必修4三角函数的图象与性质知识点,希望

2426458