学习啦>学习方法>高中学习方法>高二学习方法>高二数学>

高二数学期末复习资料(2)

时间: 文娟843 分享

  公式六:

  π/2±α及3π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC

  证明:

  已知(A+B)=(π-C)

  所以tan(A+B)=tan(π-C)

  则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

  整理可得

  tanA+tanB+tanC=tanAtanBtanC

  类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ

  设a=(x,y),b=(x',y')。

  1、向量的加法

  向量的加法满足平行四边形法则和三角形法则。

  AB+BC=AC。

  a+b=(x+x',y+y')。

  a+0=0+a=a。

  向量加法的运算律:

  交换律:a+b=b+a;

  结合律:(a+b)+c=a+(b+c)。

  2、向量的减法

  如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

  AB-AC=CB. 即“共同起点,指向被减”

  a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

  4、数乘向量

  实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

  当λ>0时,λa与a同方向;

  当λ<0时,λa与a反方向;

  当λ=0时,λa=0,方向任意。

  当a=0时,对于任意实数λ,都有λa=0。

  注:按定义知,如果λa=0,那么λ=0或a=0。

  实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

  当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

  当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

  数与向量的乘法满足下面的运算律

  结合律:(λa)·b=λ(a·b)=(a·λb)。

  向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

  数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

  数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

  3、向量的的数量积

  定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。

  定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。

  向量的数量积的坐标表示:a·b=x·x'+y·y'。

  向量的数量积的运算率

  a·b=b·a(交换率);

  (a+b)·c=a·c+b·c(分配率);

  向量的数量积的性质

  a·a=|a|的平方。

  a⊥b 〈=〉a·b=0。

  |a·b|≤|a|·|b|。

  向量的数量积与实数运算的主要不同点

  1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。

  2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。

  3、|a·b|≠|a|·|b|

  4、由 |a|=|b| ,推不出 a=b或a=-b。

  4、向量的向量积

  定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

  向量的向量积性质:

  ∣a×b∣是以a和b为边的平行四边形面积。

  a×a=0。

  a‖b〈=〉a×b=0。

  向量的向量积运算律

  a×b=-b×a;

  (λa)×b=λ(a×b)=a×(λb);

  (a+b)×c=a×c+b×c.

  注:向量没有除法,“向量AB/向量CD”是没有意义的。

  向量的三角形不等式

  1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

  ① 当且仅当a、b反向时,左边取等号;

  ② 当且仅当a、b同向时,右边取等号。

  2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

  ① 当且仅当a、b同向时,左边取等号;

  ② 当且仅当a、b反向时,右边取等号。

  定比分点

  定比分点公式(向量P1P=λ·向量PP2)

  设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ·向量PP2,λ叫做点P分有向线段P1P2所成的比。

  若P1(x1,y1),P2(x2,y2),P(x,y),则有

  OP=(OP1+λOP2)(1+λ);(定比分点向量公式)

  x=(x1+λx2)/(1+λ),

  y=(y1+λy2)/(1+λ)。(定比分点坐标公式)

  我们把上面的式子叫做有向线段P1P2的定比分点公式

  三点共线定理

  若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线

  三角形重心判断式

  在△ABC中,若GA +GB +GC=0 ,则G为△ABC的重心

  向量共线的重要条件

  若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。

  a//b的重要条件是 xy'-x'y=0。

  零向量0平行于任何向量。

  向量垂直的充要条件

  a⊥b的充要条件是 a·b=0。

  a⊥b的充要条件是 xx'+yy'=0。

  零向量0垂直于任何向量.

  还有注意一点,不要把点写成叉

  圆锥曲线里的弦长公式

  d=根号(1+k^2)|x1-x2|=根号(1+k^2)根号[(x1+x2)^2-4x1x2]=根号[(x1-x2)^2+(y1-y2)^2]

  圆里相交直线所构成的弦长m,与圆的半径r,圆心到直线的距离d的关系为

  (m/2)^2+d^2=r^2

  直线

  A1x+B1y+C1=0

  A2x+B2y+C2=0

  平行的充要条件是A1B2+A2B1=0且B1C2+B2C1不等于0

  点到直线的距离公式

  d=|Ax0+By0+C|/根号(A^2+B^2)

  若平行

  则d=|c2-c1|/根号(A^2+B^2)

  A和B上下两个式子必须相等
看过"高二数学期末复习资料 "的还看了:

1.高二数学期末考试的复习指导

2.高二上学期数学期末复习安排

3.高二数学考试复习技巧

1308421