七年级下册数学第四章测试题
七年级下册数学第四章测试题
单元考试是学校测试学生学习七年级下册数学第四章知识的一种常用方法,也是促进学生学习数学、改善教师课堂教学的有效手段。接下来是学习啦小编为大家带来的七年级下册数学第四章的测试题,供大家参考。
七年级下册数学第四章测试题目
一. 填空题
1.在关系式S=45t中,自变量是 , 因变量是 , 当t=1.5时,S= 。
2.已知等腰三角形的底为3,腰长为x,则周长y可以表示为 。
3.如图,表示的是小明在6点---8点时他的速度与时间的图像,则在6点----8点的路程
是 千米.
4.如图,假设圆柱的高是5cm,当圆柱的底面半径由小到大变化时,
(1)圆柱的体积如何变化? ,
在这个变化过程中,自变量是 ,因变量是 .
(2)如果圆柱底面半径为r(cm),那么圆柱的体积V(cm3)可以表示为 .
(3)当r由1cm变化到10cm时,V由 cm3变化到 cm3.
5.如图所示,圆锥的底面半径是2 厘米,当圆锥的高由小到大变化时,圆锥的体积也随之而发生了变化.
(1)在这个变化过程中,自变量是______________,因变量是_________ ;
(2)如果圆锥的高为h (厘米),那么圆锥的体积V(厘米3)与h 的关系式是_____________;
(3)当高由1 厘米变化到10厘米时,圆锥的体积由________厘米3变化到_______ 厘米3.
6.如图所示,长方形的长为12,宽为x .(1)若设长方形的面积S,则面积S与宽x之间的关系是 .
(2)若用C表示长方形的周长,则周长C与宽x之间的关系是 .
二.选择题
7.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同.下图反映了一天24小时
内小明体温的变化情况,下列说法错误的是【 】
A.清晨5时体温最低
B.下午5时体温最高
C.这一天中小明体温T(单位:℃)的范围是36.5≤T≤37.5
D.从5时至24时,小明体温一直是升高的。
8.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸
才开始出发,图中两条线段分别表示小军和爸爸离开山脚登山的路程s(米)与登山所用的
时间t(分钟)的关系(从爸爸开始登山时计时)。根据图像,下列说法错误的是【 】
A.爸爸开始登山时,小军已走了50米
B.爸爸走了5分钟,小军仍在爸爸的前面
C.小军比爸爸晚到山顶
D.爸爸前10分钟登山的速度比小军慢,10分钟之后登山的速度比小军快
9. 如图表示某加工厂今年前5个月每月生产某种产品的产量c(件)与时间t(月)之间的关系,则对这种产品来说,该厂【 】
A.1月至3月每月产量逐月增加,4、5两月产量逐月减小
B.1月至3月每月产量逐月增加,4、5两月产量与3月持平
C.1月至3月每月产量逐月增加,4、5两月产量均停止生产
D. 1月至3月每月产量不变,4、5两月均停止生产
10.小强和小敏练短跑,小敏在小强前面12米。如图,OA、BA分别表示小强、小敏在短跑
中的距离S(单位:米)与时间t(单位:秒)的变量关系的图象。根据图象判断小强的速
度比小敏的速度每秒快( )
A.2.5米 B.2米 C.1.5米 D.1米
三.解答题
11.如下图,是骆驼的体温随时间变化而变化的的关系图,据图回答下列问题:
(1)一天中,骆驼体温的变化范围是什么?它的体温从最低上升到最高需要多少时间?
(2)从16时到24时,骆驼的体温下降了多少?
(3)在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?
(4)你能看出第二天8时骆驼的体温与第一天8时有什么关系吗?
(5)A点表示的是什么?还有几时的温度与A点所表示的温度相同?
12.为了增强公民的节水意识,某制定了如下用水收费标准:
用水量(吨) 水费(元)
不超过10吨 每吨1.2元
超过10吨 超过的部分按每吨1.8元收费
(1)该市某户居民5月份用水x吨(x>10),应交水费y(元)应表示为 ;
(2)如果该户居民交了30元的水费,你能帮他算算实际用了多少的水吗?
13.某蓄水池开始蓄水,每时进水20米3,设蓄水量为V(米3),蓄水时间为t(时)
(1)V与t之间的关系式是什么?
(2)用表格表示当t从2变化到8时(每次增加1),相应的V值?
(3)若蓄水池最大蓄水量为1000米3,则需要多长时间能蓄满水?
(4)当t逐渐增加时,V怎样变化?说说你的理由。
14.一农民朋友带了若干千克的土豆进城出售,为 了方便,他带了一些零钱备用.按市场售出一些后,又降价出售.售出土豆千克数x与他手中持有的钱数y(含备用零钱)的关系如下图所示,结合图像回答下列问题:
(1)农民自带的零钱是多少?
(2)降价前他每千克土豆出售的价格是多少?
(3)降价后他按每千克0.4元将剩余的土豆售完,这时他手中的钱(含备用的钱)是26元,问他一共带了多少千克的土豆?
15.如图所示,在一个边长为12cm的正方形的四个角都剪去一个大小相等的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化。
(1)在这个变化过程在,自变量、因变量各是什么?
(2)如果小正方形的边长为xcm,图中阴影部分的面积为ycm2,写出y与x的关系式;
(3)当小正方形的边长由1cm变化到5cm时,阴影部分的面积是怎样变化的?
猜你感兴趣: