2017年初一数学上册期末试卷
2017年初一数学上册期末试卷
没有目标的复习数学期末考试知识,就没有没有方向。每一个学习开始阶段都应该给自己树立一个目标。下面由学习啦小编为你整理的2017年初一数学上册期末试卷,希望对大家有帮助!
初一数学上册期末试卷
一、选择题(每题2分,满分12分)
1.下列代数式中,单项式的个数是①2x﹣3y;② ;③ ;④﹣a;⑤ ;⑥ ;⑦﹣7x2y;⑧0( )
A.3个 B.4个 C.5个 D.6个
2.下列运算正确的是( )
A.2a+3b=5ab B.(3a3)2=6a6 C.a6÷a2=a3 D.a2•a3=a5
3.若分式 中的x和y都扩大5倍,那么分式的值( )
A.不变 B.扩大5倍
C.缩小到原来的 D.无法判断
4.下列从左到右的变形,其中是因式分解的是( )
A.2(a﹣b)=2a﹣2b B.x2﹣2x+1=x(x﹣2)+1
C.(m+1)(m﹣1)=m2﹣1 D.3a(a﹣1)+(1﹣a)=(3a﹣1)(a﹣1)
5.很多图标在设计时都考虑对称美.下列是几所国内知名大学的图标,若不考虑图标上的文字、字母和数字,其中是中心对称图形的是( )
A.
清华大学 B.
浙江大学 C.
北京大学 D.
中南大学
6.如图,小明正在玩俄罗斯方块,他想将正在下降的“L”型插入图中①的位置,他需要怎样操作?( )
A.先绕点O逆时针旋转90°,再向右平移3个单位,向下平移6个单位
B.先绕点O顺时针旋转90°,再向右平移3个单位,向下平移6个单位
C.先绕点O逆时针旋转90°,再向右平移4个单位,向下平移5个单位
D.先绕点O顺时针旋转90°,再向右平移3个单位,向下平移6个单位
二、填空题(每题2分,满分24分)
7.计算:(﹣ a2b)3= .
8.计算:(x﹣1)(x+3)= .
9.计算:(8a2b﹣4ab2)÷(﹣ ab)= .
10.PM2.5是指大气中直径小于或等于2.5微米(0.0000000025米)的颗粒物,也称为可入肺颗粒物,2.5微米用科学记数法表示为 米.
11.分解因式:4x2﹣12xy+9y2= .
12.如果关于x的多项式x2﹣kx+9是一个完全平方式,那么k= .
13.如果单项式﹣xyb+1与 xa﹣2y3是同类项,那么(b﹣a)2016= .
14.当x= 时,分式 无意义.
15.关于x的方程 + =2有增根,则m= .
16.如图所示,把△ABC沿直线DE翻折后得到△A′DE,如果∠A′EC=32°,那么∠A′ED= .
17.已知a,b,c是三角形ABC的三边,且b2+2ab=c2+2ac,则三角形ABC的形状是 三角形.
18.若2x+3y﹣2=0,则9x﹣3•27y+1= .
三、计算题(每题6分,满分42分)
19.计算:(2x﹣1)2﹣2(x+3)(x﹣3).
20.计算: + ﹣ .
21.分解因式:9a2(x﹣y)+(y﹣x)
22.因式分解:(x2+x)2﹣8(x2+x)+12.
23.解方程: .
24.计算: • .
25.先化简,后求值:(x+1﹣ )÷ ,其中x= .
四、解答题(满分22分)
26.如图,
(1)请画出△ABC关于直线MN的对称图形△A1B1C1.
(2)如果点A2是点A关于某点成中心对称,请标出这个对称中心O,并画出△ABC关于点O成中心对称的图形△A2B2C2.
27.“新禧”杂货店去批发市场购买某种新型儿童玩具,第一次用1200元购得玩具若干个,并以7元的价格出售,很快就售完.由于该玩具深受儿童喜爱,第二次进货时每个玩具的批发价已比第一次提高了20%,他用1500元所购买的玩具数量比第一次多10个,再按8元售完,问该老板两次一共赚了多少钱?
28.如图,四边形ABCD是正方形,BM=DF,AF垂直AM,M、B、C在一条直线上,且△AEM与△AEF恰好关于AE所在直线成轴对称,已知EF=x,正方形边长为y.
(1)图中△ADF可以绕点 按顺时针方向旋转 °后能与△ 重合;
(2)用x、y的代数式表示△AEM与△EFC的面积.
2017年初一数学上册期末试卷参考答案与试题解析
一、选择题(每题2分,满分12分)
1.下列代数式中,单项式的个数是①2x﹣3y;② ;③ ;④﹣a;⑤ ;⑥ ;⑦﹣7x2y;⑧0( )
A.3个 B.4个 C.5个 D.6个
【考点】单项式.
【分析】根据单项式的概念即可判断.
【解答】解:③ ;④﹣a;⑥ ;⑦﹣7x2y;⑧0是单项式,
故选(C)
2.下列运算正确的是( )
A.2a+3b=5ab B.(3a3)2=6a6 C.a6÷a2=a3 D.a2•a3=a5
【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.
【分析】直接利用积的乘方法则以及合并同类项、同底数幂的乘法运算法则进而得出答案.
【解答】解:A、2a+3b无法计算,故此选项错误;
B、(3a3)2=9a6,故此选项错误;
C、a6÷a2=a4,故此选项错误;
D、a2•a3=a5,故此选项正确;
故选:D.
3.若分式 中的x和y都扩大5倍,那么分式的值( )
A.不变 B.扩大5倍
C.缩小到原来的 D.无法判断
【考点】分式的基本性质.
【分析】根据分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,可得答案.
【解答】解:分式 中的x和y都扩大5倍,那么分式的值不变,
故选:A.
4.下列从左到右的变形,其中是因式分解的是( )
A.2(a﹣b)=2a﹣2b B.x2﹣2x+1=x(x﹣2)+1
C.(m+1)(m﹣1)=m2﹣1 D.3a(a﹣1)+(1﹣a)=(3a﹣1)(a﹣1)
【考点】因式分解的意义.
【分析】根据因式分解的意义,看每个选项是不是把一个多项式写成整式积的形式,得出结论.
【解答】解:选项A、C是多项式的乘法,选项B不是积的形式,不是因式分解.选项D把多项式变形成了整式积的形式,属于因式分解.
故选D.
5.很多图标在设计时都考虑对称美.下列是几所国内知名大学的图标,若不考虑图标上的文字、字母和数字,其中是中心对称图形的是( )
A.
清华大学 B.
浙江大学 C.
北京大学 D.
中南大学
【考点】中心对称图形.
【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.
【解答】解:A、不中心对称的图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、不是中心对称图形,故此选项错误;
D、是中心对称图形,故此选项正确;
故选:D.
6.如图,小明正在玩俄罗斯方块,他想将正在下降的“L”型插入图中①的位置,他需要怎样操作?( )
A.先绕点O逆时针旋转90°,再向右平移3个单位,向下平移6个单位
B.先绕点O顺时针旋转90°,再向右平移3个单位,向下平移6个单位
C.先绕点O逆时针旋转90°,再向右平移4个单位,向下平移5个单位
D.先绕点O顺时针旋转90°,再向右平移3个单位,向下平移6个单位
【考点】旋转的性质;平移的性质.
【分析】由旋转的性质和平移的性质即可得出结论.
【解答】解:小明正在玩俄罗斯方块,他想将正在下降的“L”型插入图中①的位置,他需要先绕点O顺时针旋转90°,再向右平移3个单位,向下平移6个单位;
故选:D.
二、填空题(每题2分,满分24分)
7.计算:(﹣ a2b)3= ﹣ a6b3 .
【考点】幂的乘方与积的乘方.
【分析】利用(ambn)p=ampbnp计算即可.
【解答】解:原式=﹣ a6b3.
故答案是=﹣ a6b3.
8.计算:(x﹣1)(x+3)= x2+2x﹣3 .
【考点】多项式乘多项式.
【分析】多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.依此计算即可求解.
【解答】解:(x﹣1)(x+3)
=x2+3x﹣x﹣3
=x2+2x﹣3.
故答案为:x2+2x﹣3.
9.计算:(8a2b﹣4ab2)÷(﹣ ab)= ﹣16a+8b .
【考点】整式的除法.
【分析】直接利用多项式除法运算法则计算得出答案.
【解答】解:(8a2b﹣4ab2)÷(﹣ ab)
=8a2b÷(﹣ ab)﹣4ab2÷(﹣ ab)
=﹣16a+8b.
故答案为:﹣16a+8b.
10.PM2.5是指大气中直径小于或等于2.5微米(0.0000000025米)的颗粒物,也称为可入肺颗粒物,2.5微米用科学记数法表示为 2.5×10﹣9 米.
【考点】科学记数法—表示较小的数.
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【解答】解:0.00 000 000 25=2.5×10﹣9,
故答案为:2.5×10﹣9.
11.分解因式:4x2﹣12xy+9y2= (2x﹣3y)2 .
【考点】提公因式法与公式法的综合运用.
【分析】利用完全平方公式即可直接分解.
【解答】解:原式=(2x﹣3y)2.
故答案是:(2x﹣3y)2.
12.如果关于x的多项式x2﹣kx+9是一个完全平方式,那么k= ±6 .
【考点】完全平方式.
【分析】利用完全平方公式的结构特征判断即可.
【解答】解:∵关于x的多项式x2﹣kx+9是一个完全平方式,
∴k=±6,
故答案为:±6
13.如果单项式﹣xyb+1与 xa﹣2y3是同类项,那么(b﹣a)2016= 1 .
【考点】同类项.
【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.
【解答】解:由题意,得
a﹣2=1,b+1=3,
解得a=3,b=2.
(b﹣a)2016=(﹣1)2016=1,
故答案为日:1.
14.当x= ﹣3 时,分式 无意义.
【考点】分式有意义的条件.
【分析】根据分式无意义的条件可得x+3=0,再解即可.
【解答】解:由题意得:x+3=0,
解得:x=﹣3,
故答案为:﹣3.
15.关于x的方程 + =2有增根,则m= .
【考点】分式方程的增根.
【分析】分式方程去分母转化为整式方程,由分式方程有增根,求出x的值,代入整式方程计算即可求出m的值.
【解答】解:去分母得:5x﹣3﹣mx=2x﹣8,
由分式方程有增根,得到x﹣4=0,即x=4,
把x=4代入整式方程得:20﹣3﹣4m=0,
快捷得:m= ,
故答案为:
16.如图所示,把△ABC沿直线DE翻折后得到△A′DE,如果∠A′EC=32°,那么∠A′ED= 74° .
【考点】翻折变换(折叠问题).
【分析】根据折叠的性质可知,∠A′ED=∠AED,再根据平角的定义和已知条件即可求解.
【解答】解:∵把△ABC沿直线DE翻折后得到△A′DE,
∴∠A′ED=∠AED,
∵∠A′EC=32°,
∴∠A′ED=÷2=74°.
故答案为:74°.
17.已知a,b,c是三角形ABC的三边,且b2+2ab=c2+2ac,则三角形ABC的形状是 等腰 三角形.
【考点】因式分解的应用.
【分析】根据b2+2ab=c2+2ac,可以求得a、b、c之间的关系,从而可以求得三角形的形状.
【解答】解:∵b2+2ab=c2+2ac,
∴b2+2ab+a2=c2+2ac+a2,
∴(a+b)2=(a+c)2,
∴a+b=a+c,
∴b=c,
∴三角形ABC是等腰三角形,
故答案为:等腰.
18.若2x+3y﹣2=0,则9x﹣3•27y+1= .
【考点】同底数幂的除法;同底数幂的乘法.
【分析】直接利用幂的乘方运算法则将原式变形,进而求出答案.
【解答】解:∵2x+3y﹣2=0,
∴2x+3y=2,
9x﹣3•27y+1
=(32)x﹣3•(33)y+1
=32x﹣6•33y+3
=32x+3y﹣3,
=3﹣1
= .
故答案为: .
三、计算题(每题6分,满分42分)
19.计算:(2x﹣1)2﹣2(x+3)(x﹣3).
【考点】平方差公式;完全平方公式.
【分析】先根据完全平方公式和平方差公式计算,再根据合并同类项法则合并即可.
【解答】解:(2x﹣1)2﹣2(x+3)(x﹣3)
=4x2﹣4x+1﹣2x2+9
=2x2﹣4x+10.
20.计算: + ﹣ .
【考点】分式的加减法;负整数指数幂.
【分析】根据分式运算的法则以及负整数指数幂的意义即可求出答案.
【解答】解:原式= + ﹣
= + ﹣
= ﹣ + ﹣
=0
21.分解因式:9a2(x﹣y)+(y﹣x)
【考点】提公因式法与公式法的综合运用.
【分析】直接提取公因式(x﹣y),进而利用平方差公式分解因式得出答案.
【解答】解:9a2(x﹣y)+(y﹣x)
=(x﹣y)(9a2﹣1)
=(x﹣y)(3a+1)(3a﹣1).
22.因式分解:(x2+x)2﹣8(x2+x)+12.
【考点】因式分解-十字相乘法等.
【分析】先把x2+x看做一个整体,然后根据十字相乘法的分解方法和特点分解因式.
【解答】解:(x2+x)2﹣8(x2+x)+12,
=(x2+x﹣2)(x2+x﹣6),
=(x﹣1)(x+2)(x﹣2)(x+3).
23.解方程: .
【考点】解分式方程.
【分析】观察可得最简公分母是(x+3)(2﹣x),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
【解答】解:方程两边同乘以(x+3)(2﹣x),得
x(2﹣x)﹣x(x+3)=2(x+3)(2﹣x)
2x﹣x2﹣3x﹣x2=12﹣2x﹣2x2
∴x=12
检验:当x=12时,(x+3)(2﹣x)≠0
∴原方程的解为x=12.
24.计算: • .
【考点】分式的乘除法.
【分析】先将分式的分子与分母进行因式分解
【解答】解:原式= •
= •
=
25.先化简,后求值:(x+1﹣ )÷ ,其中x= .
【考点】分式的化简求值.
【分析】首先把括号内的分式通分相加,再把除法转化为乘法,计算乘法即可化简,最后代入数值计算即可.
【解答】解:原式= •
=
= .
当x= 时,原式= = .
四、解答题(满分22分)
26.如图,
(1)请画出△ABC关于直线MN的对称图形△A1B1C1.
(2)如果点A2是点A关于某点成中心对称,请标出这个对称中心O,并画出△ABC关于点O成中心对称的图形△A2B2C2.
【考点】作图-旋转变换;作图-轴对称变换.
【分析】(1)分别作出A、B、C三点关于直线MN的对称点后顺次连接即可.
(2)找到AA2的中点即为O点位置,再利用中心对称图形的性质得出对应点坐标连接即可.
【解答】解:(1)如图所示:画出△ABC关于直线MN的对称图形△A1B1C1;
(2)如图所示:找出对称中心O,画出△ABC关于点O成中心对称的图形△A2B2C2.
27.“新禧”杂货店去批发市场购买某种新型儿童玩具,第一次用1200元购得玩具若干个,并以7元的价格出售,很快就售完.由于该玩具深受儿童喜爱,第二次进货时每个玩具的批发价已比第一次提高了20%,他用1500元所购买的玩具数量比第一次多10个,再按8元售完,问该老板两次一共赚了多少钱?
【考点】分式方程的应用.
【分析】设这种新型儿童玩具第一次进价为x元/个,则第二次进价为1.2x元/个,分别可以表示出第一次购买玩具的数量和第二次购买玩具的数量,根据两次购买玩具的数量之间的关系建立方程求出其解就可以了.
【解答】解:设这种新型儿童玩具第一次进价为x元/个,则第二次进价为1.2x元/个,
根据题意,得 ﹣ =10,
变形为:1500﹣1440=12x,
解得:x=5,
经检验,x=5是原方程的解,
则该老板这两次购买玩具一共盈利为: (7﹣1.2×5)+ ×(7﹣5)=730(元).
答:该老板两次一共赚了730元.
28.如图,四边形ABCD是正方形,BM=DF,AF垂直AM,M、B、C在一条直线上,且△AEM与△AEF恰好关于AE所在直线成轴对称,已知EF=x,正方形边长为y.
(1)图中△ADF可以绕点 A 按顺时针方向旋转 90 °后能与△ ABM 重合;
(2)用x、y的代数式表示△AEM与△EFC的面积.
【考点】旋转的性质;轴对称的性质.
【分析】(1)利用旋转的定义求解;
(2)由于△AEM≌△AEF,则EF=EM,即x=BE+BM=DF+BE,则根据三角形面积公式得到S△AME= xy,然后利用S△CEF=S正方形ABCD﹣S△AEF﹣S△ABE﹣S△ADF可表示出△EFC的面积.
【解答】解:(1)图中△ADF可以绕点A按顺时针方向旋转90°后能够与△ABM重合;
故答案为:A、90°,ABM.
(2)∵△AEM与△AEF恰好关于所在直线成轴对称,
∴EF=EM,
即x=BE+BM,
∵BM=DF,
∴x=DF+BE,
∴S△AME= •AB•ME= xy,
S△CEF=S正方形ABCD﹣S△AEF﹣S△ABE﹣S△ADF
=y2﹣ xy﹣ •y•BE﹣ •y•DF
=y2﹣ xy﹣ •y(BE+DF)
=y2﹣ xy﹣ •y•x
=y2﹣xy.