新人教版八年级上册数学期末试卷(2)
新人教版八年级上册数学期末试卷
∴此函数图象经过一、二、三象限.
故选D.
【点评】本题考查的是一次函数的图象与系数的关系,熟知函数y=kx+b(k≠0)中,当k<0,b<0时函数的图象在二、三、四象限是解答此题的关键.
二、填空题(共10小题,每小题2分,满分20分)
11. =a, =b,则 = 0.1b .
【考点】算术平方根.
【专题】计算题;实数.
【分析】根据题意,利用算术平方根定义表示出所求式子即可.
【解答】解:∵ =b,
∴ = = = =0.1b.
故答案为:0.1b.
【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.
12.一组数据5,7,7,x的中位数与平均数相等,则x的值为 5或9 .
【考点】中位数;算术平均数.
【专题】分类讨论.
【分析】根据平均数与中位数的定义就可以解决.中位数可能是7或6.
【解答】解:当x≥7时,中位数与平均数相等,则得到: (7+7+5+x)=7,解得x=9;
当x≤5时: (7+7+5+x)=6,解得:x=5;
当5
所以x的值为5或9.
故填5或9.
【点评】本题考查平均数和中位数.求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.同时运用分类讨论的思想解决问题.
13. ﹣3 + = 3 .
【考点】二次根式的加减法.
【分析】先把各根式化为最简二次根式,再合并同类项即可.
【解答】解:原式=4 ﹣ +
=(4﹣ +1)
=3 .
故答案为:3 .
【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.
14.已知m是 的整数部分,n是 的小数部分,则m2﹣n2= 6 ﹣10 .
【考点】估算无理数的大小.
【分析】由于3< <4,由此找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的整数部分,小数部分让原数减去整数部分,代入求值即可.
【解答】解:∵3< <4,则m=3;
又因为3< <4,故n= ﹣3;
则m2﹣n2=6 ﹣10.
故答案为:6 ﹣10.
【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.估算出整数部分后,小数部分=原数﹣整数部分.
15.若x、y都是实数,且y= ,x+y= 11 .
【考点】二次根式有意义的条件.
【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式求出x、y的值,代入代数式计算即可.
【解答】解:由题意得,x﹣3≥0,3﹣x≥0,
解得,x=3,
则y=8,
∴x+y=11,
故答案为:11.
【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.
16.已知xm﹣1+2yn+1=0是二元一次方程,则m= 2 ,n= 0 .
【考点】二元一次方程的定义.
【分析】根据二元一次方程的定义,从二元一次方程的未知数的次数方面考虑,求常数m、n的值.
【解答】解:根据二元一次方程两个未知数的次数为1,得
,
解得m=2,n=0.
【点评】二元一次方程必须符合以下三个条件:
(1)方程中只含有2个未知数;
(2)含未知数项的最高次数为一次;
(3)方程是整式方程.
17.在等式y=kx+b中,当x=0时,y=1,当x=1时,y=2,则k= 1 ,b= 1 .
【考点】解二元一次方程组.
【专题】计算题;一次方程(组)及应用.
【分析】把x与y的值代入已知等式得到关于k与b的方程组,求出方程组的解即可得到k与b的值.
【解答】解:把x=0,y=1;x=1,y=2代入得: ,
解得:k=b=1,
故答案为:1;1
【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
18.某船在顺水中航行的速度是m千米/时,在逆水中航行的速度是n千米/时,则水流的速度是 .
【考点】列代数式.
【分析】设水流的速度是x千米/时,根据静水的速度=顺流速度﹣水流的速度,静水的速度=逆流速度+水流的速度,列式计算即可.
【解答】解:设水流的速度是x千米/时,根据题意得:
m﹣x=n+x,
解得:x= ,
答:水流的速度是 千米/时.
故答案为: .
【点评】此题考查了列代数式;用到的知识点为:逆水速度=静水速度﹣水流速度;顺水速度=静水速度+水流速度.
19.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于 62° .
【考点】平行线的性质;三角形内角和定理.
【分析】先根据三角形的内角和定理求出∠A,再根据两直线平行,同位角相等可得∠DEC=∠A,从而得解.
【解答】解:∵∠B=55°,∠C=63°,
∴∠A=180°﹣∠B﹣∠C=180°﹣55°﹣63°=62°,
∵DE∥AB,
∴∠DEC=∠A=62°.
故答案为:62°.
【点评】本题考查了平行线的性质,三角形的内角和定理,熟记性质是解题的关键.
20.已知:如图所示,AB∥CD,若∠ABE=130°,∠CDE=152°,则∠BED= 78 度.
【考点】平行线的性质.
【专题】计算题;压轴题.
【分析】首先做一条辅助线,平行于两直线,再利用平行线的性质即可求出.
【解答】解:过点E作直线EF∥AB,
∵AB∥CD,
∴EF∥CD,
∵AB∥EF,
∴∠1=180°﹣∠ABE=180°﹣130°=50°;
∵EF∥CD,
∴∠2=180°﹣∠CDE=180°﹣152°=28°;
∴∠BED=∠1+∠2=50°+28°=78°.
故填78.
【点评】解答此题的关键是过点E作直线EF∥AB,利用平行线的性质可求∠BED的度数.
三、解答题(共7小题,满分50分)
21.(1)计算:
(2)解下列方程组: .
【考点】二次根式的加减法;解二元一次方程组.
【分析】(1)首先化简二次根式,进而合并同类二次根式即可;
(2)利用代入消元法解方程组得出答案.
【解答】解:(1)
= +2 ﹣10
=﹣ ;
(2)
整理得:
,
由②得,y=9﹣4x,代入3x+4y=10,
故3x+4(9﹣4x)=10,
解得:x=2,
故y=1,
故方程组的解集为: .
【点评】此题主要考查了二次根式的加减以及二元一次方程组的解法,正确化简二次根式是解题关键.
22.m为正整数,已知二元一次方程组 有整数解,求m的值.
【考点】二元一次方程组的解.
【专题】计算题.
【分析】利用加减消元法易得x、y的解,由x、y均为整数可解得m的值.
【解答】解:关于x、y的方程组: ,
①+②得:(3+m)x=10,即x= ③,
把③代入②得:y= ④,
∵方程的解x、y均为整数,
∴3+m既能整除10也能整除15,即3+m=5,解得m=2.
故m的值为2.
【点评】本题考查了二元一次方程组的解法,涉及到因式分解相关知识点,解二元一次方程组有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.
23.如图:
【考点】二元一次方程组的应用.
【分析】首先设1本笔记本为x元,1支钢笔y元,由题意得等量关系:①1本笔记本+1支钢笔=6元;②1本笔记本+4支钢笔=18元,根据等量关系列出方程组,再解即可.
【解答】解:设1本笔记本为x元,1支钢笔y元,由题意得:
,
解得: ,
答:1本笔记本为2元,1支钢笔4元.
【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.
24.如图表示两辆汽车行驶路程与时间的关系(汽车B在汽车A后出发)的图象,试回答下列问题:
(1)图中l1,l2分别表示哪一辆汽车的路程与时间的关系?
(2)写出汽车A和汽车B行驶的路程s与时间t的函数关系式,并求汽车A和汽车B的速度;
(3)图中交点的实际意义是什么?
【考点】一次函数的应用.
【分析】(1)分析图形,得知l1表示先出发的那辆,l2表示两小时后出发的那辆,从而得出结论;
(2)设出路程与时间的关系式,分别代入图形中能看出的点,即可得知函数关系式,汽车的速度为函数关系式的斜率;
(3)由y轴表示的路程可知,交点表示两车路程相同,即相遇.
【解答】解:(1)∵汽车B在汽车A后出发,
∴l1表示A车的路程与时间的关系,l2表示B车的路程与时间的关系.
(2)设汽车行驶的路程s与时间t的函数关系s=vt+b,
①将(0,0),(3,100)代入,得 ,
解得v= ,b=0,
∴汽车A行驶的路程s与时间t的函数关系式y= t,汽车A的速度为 km/h.
②将(2,0),(3,100)代入,得 ,
解得v=100,b=﹣200,
∴汽车B行驶的路程s与时间t的函数关系式y=100t﹣200,汽车B的速度为100km/h.
(3)汽车A出发3h(或汽车B出发1h)两车相遇,此时两车行驶路程都是100km.
【点评】本题考查的一次函数的运用,解题的关键是熟练利用一次函数的特点,会使用代入法求出函数表达式.
25.一列快车长168m,一列慢车长184m,如果两车相向而行,从相遇到离开需4s,如果同向而行,从快车追及慢车到离开需16s,求两车的速度.
【考点】二元一次方程组的应用.
【分析】首先设快车速度为xm/s,慢车速度为ym/s,由题意得等量关系:两车速度和×4s=两车长之和;两车速度差×16s=两车长之和,根据等量关系列出方程组,再解即可.
【解答】解:设快车速度为xm/s,慢车速度为ym/s,由题意得:
,
解得: ,
答:快车速度为55m/s,慢车速度为33m/s.
【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.
26.某运动队欲从甲、乙两名优秀选手中选一名参加全省射击比赛,该运动队预先对这两名选手进行了8次测试,测得的成绩如表:
次数 选手甲的成绩(环) 选手乙的成绩(环)
1 9.6 9.5
2 9.7 9.9
3 10.5 10.3
4 10.0 9.7
5 9.7 10.5
6 9.9 10.3
7 10.0 10.0
8 10.6 9.8
根据统计的测试成绩,请你运用所学过的统计知识作出判断,派哪一位选手参加比赛更好?为什么?
【考点】方差;算术平均数.
【分析】根据平均数的计算公式先分别求出甲和乙的平均数,再根据方差公式进行计算即可得出答案.
【解答】解:∵甲的平均数是: (9.6+9.7+…+10.6)=10,
乙的平均数是: (9.5+9.9+…+9.8)=10,
∴S2甲= [(9.6﹣10)2+(9.7﹣10)2+…+(10.6﹣10)2]=0.12,
S2乙= [(9.5﹣10)2+(9.9﹣10)2+…+(9.8﹣10)2]=0.1025,
∵S2甲>S2乙,
∴派乙选手参加比赛更好.
【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为 ,则方差S2= [(x1﹣ )2+(x2﹣ )2+…+(xn﹣ )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
27.已知:如图,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD.
【考点】平行线的性质.
【专题】证明题.
【分析】过点C作CF∥AB,再由平行线的性质得出∠BCF=∠ABC,∠DCF=∠EDC,进而可得出结论.
【解答】证明:过点C作CF∥AB,
∵AB∥CF,
∴AB∥ED∥CF,
∴∠BCF=∠ABC,∠DCF=∠EDC,
∴∠ABC+∠CDE=∠BCD.
【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.
看了“新人教版八年级上册数学期末试卷”的人还看了: