新人教版八年级数学上册知识点
新人教版八年级数学上册知识点
在初二阶段,复习时不会的、不懂的题目和八年级数学知识点。小编整理了关于新人教版八年级数学上册知识点,希望对大家有帮助!
新人教版八年级数学上册知识点(一)
1 全等三角形的对应边、对应角相等 ¬
2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 ¬
3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 ¬
4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 ¬
5 边边边公理(SSS) 有三边对应相等的两个三角形全等 ¬
6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 ¬
7 定理1 在角的平分线上的点到这个角的两边的距离相等 ¬
8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 ¬
9 角的平分线是到角的两边距离相等的所有点的集合 ¬
10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) ¬
21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 ¬
22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 ¬
23 推论3 等边三角形的各角都相等,并且每一个角都等于60° ¬
24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) ¬
25 推论1 三个角都相等的三角形是等边三角形 ¬
26 推论 2 有一个角等于60°的等腰三角形是等边三角形 ¬
27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 ¬
28 直角三角形斜边上的中线等于斜边上的一半 ¬
29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ¬
30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 ¬
新人教版八年级数学上册知识点(二)
1 全等三角形的对应边、对应角相等 ¬
2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 ¬
3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 ¬
4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 ¬
5 边边边公理(SSS) 有三边对应相等的两个三角形全等 ¬
6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 ¬
7 定理1 在角的平分线上的点到这个角的两边的距离相等 ¬
8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 ¬
9 角的平分线是到角的两边距离相等的所有点的集合 ¬
10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) ¬
21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 ¬
22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 ¬
23 推论3 等边三角形的各角都相等,并且每一个角都等于60° ¬
24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) ¬
25 推论1 三个角都相等的三角形是等边三角形 ¬
26 推论 2 有一个角等于60°的等腰三角形是等边三角形 ¬
27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 ¬
28 直角三角形斜边上的中线等于斜边上的一半 ¬
29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ¬
30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 ¬
新人教版八年级数学上册知识点(三)
一次函数
(1)正比例函数:一般地,形如y=kx ( k是常数,k‡0)的函数,叫做正比例函数,其中k叫做比例系数;
(2)正比例函数图像特征:一些过原点的直线;
(3)图像性质:
①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大; ②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;
(4)求正比例函数的解析式:已知一个非原点即可;
(5)画正比例函数图像:经过原点和点(1 , k);(或另外一个非原点)
(6)一次函数:一般地,形如y=kx+b(k、b是常数,k‡0)的函数,叫做一次函数;
(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)
(8)一次函数图像特征:一些直线;
(9)性质:
①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0, 向上平移;当b<0,向下平移)
②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;
③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;
④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);
⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);
(10)求一次函数的解析式:即要求k与b的值;
(11)画一次函数的图像:已知两点;
用函数观点看方程(组)与不等式
(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;
(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;
(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;
(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方 程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解 方程组相当于确定两条直线交点的坐标;
新人教版八年级数学上册知识点相关文章: