高一数学优秀教案
高一数学优秀教案6篇
遵守职业道德,认真备课、教学,尽最大努力去为学生呈现更好的教学效果和课程体验。下面是小编为大家整理的高一数学优秀教案,如果大家喜欢可以分享给身边的朋友。
高一数学优秀教案(精选篇1)
教学目标
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
教学重难点
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
教学过程
等比数列性质请同学们类比得出。
【方法规律】
1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。
2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)
3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决。
【示范举例】
例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。
(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=。
例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。
例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。
高一数学优秀教案(精选篇2)
学习重点:了解弧度制,并能进行弧度与角度的换算
学习难点:弧度的概念及其与角度的关系。
学习目标
①了解弧度制,能进行弧度与角度的换算。
②认识弧长公式,能进行简单应用。对弧长公式只要求了解,会进行简单应用,不必在应用方面加深。
③了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题。
教学过程
一、自主学习
1、长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写)。这种度量角的单位制称为。
2、正角的弧度数是数,负角的弧度数是数,零角的弧度数是。
3、角的弧度数的绝对值。(为弧长,为半径)
4:完成特殊角的度数与弧度数的对应表。
角度030456090120
弧度
角度135150180210225240
弧度
角度270300315330360
弧度
5、扇形面积公式:。
二、师生互动
例1把化成弧度。
变式:把化成度。
小结:在具体运算时,弧度二字和单位符号rad可省略,如:3表示3rad,sin表示rad角的正弦。
例2用弧度制表示:
(1)终边在轴上的角的集合;
(2)终边在轴上的角的集合。
变式:终边在坐标轴上的角的集合。
例3、知扇形的周长为8,圆心角为2rad,,求该扇形的面积。
三、巩固练习
1、若=—3,则角的终边在()。
A、第一象限B、第二象限
C、第三象限D、第四象限
2、半径为2的圆的圆心角所对弧长为6,则其圆心角为。
四、课后反思
五、课后巩固练习
1、用弧度制表示终边在下列位置的角的集合:
(1)直线y=x;(2)第二象限。
2、圆弧长度等于截其圆的内接正三角形边长,求其圆心角的弧度数,并化为度表示。
高一数学优秀教案(精选篇3)
一、教学目标:
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
二、教学重点:
向量的性质及相关知识的综合应用。
三、教学过程:
(一)主要知识:
1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
(二)例题分析:略
四、小结:
1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,
2、渗透数学建模的思想,切实培养分析和解决问题的能力。
高一数学优秀教案(精选篇4)
教学类型:
探究研究型
设计思路:
通过一系列的猜想得出德.摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课.
教学过程:
一、片头
内容:现在让我们一起来学习《集合的运算——自己探索也能发现的'数学规律(第二讲)》。
二、正文讲解
1.引入:牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。”
上节课老师和大家学习了集合的运算,得出了一个有趣的规律。课后,你举例验证了这个规律吗?
那么,这个规律是偶然的,还是一个恒等式呢?
2.规律的验证:
试用集合A,B的交集、并集、补集分别表示维恩图中1,2,3,4及彩色部分的集合,通过剖析维恩图来验证猜想的正确性使用
3.抽象概括:通过我们的观察和验证,我们发现这个规律是一个恒等式。
而这个规律就是180年前的英国数学家德摩根发现的。
为了纪念他,我们将它称为德摩根律。
原来我们通过自己的探索也能发现这么伟大的数学规律。
4.例题应用:使用例题形式,将的德摩根定律的结论加以应用,让学生更加熟悉集合的运算
三、结尾
通过这在道题的解答,我们发现德摩根律为解答集合运算问题提供了更为简便的方法。
希望你在今后的学习中,勇于探索,发现更多有趣的规律。
高一数学优秀教案(精选篇5)
【考点阐述】
两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.
【考试 要求】
(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二 倍角的正弦、余弦、正切公式.
(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.
【考题分类】
(一)选择题(共5题)
1.(海南宁夏卷理7) =( )
A. B. C. 2 D.
解: ,选C。
2.(山东卷 理5文10)已知cos(α- )+sinα=
(A)- (B) (C)- (D)
解: , ,
3.(四川卷理3文4) ( )
(A) (B) (C) (D)
【解】:∵
故选D;
【点评】:此题重点考察各三角函数的关系;
4.(浙江卷理8)若 则 =( )
(A) (B)2 (C) (D)
解析:本小题主要考查三角 函数的求值问题。由 可知, 两边同时除以 得 平方得 ,解得 或用观察法.
5.(四川延考理5)已知 ,则 ( )
(A) (B) (C) (D)
解: ,选C
(二)填空题(共2题)
1.(浙江卷文12)若 ,则 _________。
解析:本 小题主要考查诱导公式及二倍角公式的应用。由 可知, ;而 。答案 :
2.(上海春卷6)化简: .
(三)解答题(共1题)
1.(上海春卷17)已知 ,求 的 值.
[解] 原式 …… 2分
. …… 5分
又 , , …… 9分
. …… 12分 文章
高一数学优秀教案(精选篇6)
教学准备
教学目标
知识目标
等差数列定义等差数列通项公式
能力目标
掌握等差
数列定义等差数列通项公式
情感目标
培养学生的观察、推理、归纳能力
教学重难点
教学重点
等差数列的概念的理解与掌握
等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用
教学过程
由__《红高粱》主题曲“酒神曲”引入等差数列定义
问题:多媒体演示,观察——发现
一、等差数列定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。
例1:观察下面数列是否是等差数列:…。
二、等差数列通项公式:
已知等差数列{an}的首项是a1,公差是d。
则由定义可得:
a2—a1=d
a3—a2=d
a4—a3=d
an—an—1=d
即可得:
an=a1+(n—1)d
例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。
分析:知道a1,d,求an。代入通项公式
解:∵a1=3,d=2
∴an=a1+(n—1)d
=3+(n—1)×2
=2n+1
例3求等差数列10,8,6,4…的第20项。
分析:根据a1=10,d=—2,先求出通项公式an,再求出a20
解:∵a1=10,d=8—10=—2,n=20
由an=a1+(n—1)d得
∴a20=a1+(n—1)d
=10+(20—1)×(—2)
=—28
例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。
分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n—1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。
解:由题意可得
a1+5d=12
a1+17d=36
∴d=2a1=2
∴an=2+(n—1)×2=2n
练习
1。判断下列数列是否为等差数列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④—1,—8,—15,—22,—29;
答案:①不是②是①不是②是
等差数列{an}的前三项依次为a—6,—3a—5,—10a—1,则a等于()
A、1 B、—1 C、—1/3 D、5/11
提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)
3、在数列{an}中a1=1,an=an+1+4,则a10=。
提示:d=an+1—an=—4
教师继续提出问题
已知数列{an}前n项和为……