学习啦>视频教程>数学教程>

高中数学教学优秀教案

时间: 航就0 分享

教案对于教师在熟悉不过吧,看一下怎么写吧。作为一位杰出的老师,时常会需要准备好教案,编写教案助于积累教学经验,不断提高教学质量。我们应该怎么写教案呢?以下是小编为大家收集的高中数学教学优秀教案,希望大家能够喜欢。

高中数学教学优秀教案篇1

教学目标:

1、理解并掌握曲线在某一点处的切线的概念;

2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;

3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化

问题的能力及数形结合思想。

教学重点:

理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。

教学难点:

用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。

教学过程:

一、问题情境

1、问题情境。

如何精确地刻画曲线上某一点处的变化趋势呢?

如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。

如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。

因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。

2、探究活动。

如图所示,直线l1,l2为经过曲线上一点P的两条直线,

(1)试判断哪一条直线在点P附近更加逼近曲线;

(2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗?

(3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?

二、建构数学

切线定义: 如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。

思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?

三、数学运用

例1 试求在点(2,4)处的切线斜率。

解法一 分析:设P(2,4),Q(xQ,f(xQ)),

则割线PQ的斜率为:

当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率;

当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。

从而曲线f(x)=x2在点(2,4)处的切线斜率为4。

解法二 设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:

当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。

练习 试求在x=1处的切线斜率。

解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:

当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。

小结 求曲线上一点处的切线斜率的一般步骤:

(1)找到定点P的坐标,设出动点Q的坐标;

(2)求出割线PQ的斜率;

(3)当时,割线逼近切线,那么割线斜率逼近切线斜率。

思考 如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?

解 设

所以,当无限趋近于0时,无限趋近于点处的切线的斜率。

变式训练

1。已知,求曲线在处的切线斜率和切线方程;

2。已知,求曲线在处的切线斜率和切线方程;

3。已知,求曲线在处的切线斜率和切线方程。

课堂练习

已知,求曲线在处的切线斜率和切线方程。

四、回顾小结

1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。

2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。

五、课外作业

高中数学教学优秀教案篇2

教学目标:

1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进

学生全面认识数学的科学价值、应用价值和文化价值。

2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。

教学重点:

如何建立实际问题的目标函数是教学的重点与难点。

教学过程:

一、问题情境

问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?

问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?

问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?

二、新课引入

导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。

1。几何方面的应用(面积和体积等的最值)。

2。物理方面的应用(功和功率等最值)。

3。经济学方面的应用(利润方面最值)。

三、知识建构

例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?

说明1解应用题一般有四个要点步骤:设——列——解——答。

说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极

值及端点值比较即可。

例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才

能使所用的材料最省?

变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?

说明1这种在定义域内仅有一个极值的函数称单峰函数。

说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:

S1列:列出函数关系式。

S2求:求函数的导数。

S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。

例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为

多大时,才能使电功率最大?最大电功率是多少?

说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。

例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。

例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。

(1)设,生产多少单位产品时,边际成本最低?

(2)设,产品的单价,怎样的定价可使利润最大?

四、课堂练习

1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。

2。在半径为R的圆内,作内接等腰三角形,当底边上高为 时,它的面积最大。

3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?

4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。

五、回顾反思

(1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。

(2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。

(3)相当多有关最值的实际问题用导数方法解决较简单。

六、课外作业

课本第38页第1,2,3,4题。

高中数学教学优秀教案篇3

高中数学趣味竞赛题(共10题)

1 、撒谎的有几人

5个高中生有,她们面对学校的新闻采访说了如下的话:

爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。”

玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。”

千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢?

2、她们到底是谁

有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。

穿黑色衣服的女子说:“我不是天使。” 穿蓝色衣服的女子说:“我不是人。” 穿白色衣服的女子说:“我不是恶魔。”那么,这三人到底分别是谁呢?

3、半只小猫

听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。

“一共生了几只小猫呀?” “猜猜看,要是猜中了,就把剩下的这只小猫给你。附近的宠物店听说以后,马上来买走了所有小猫的一半和半只。” “半只?”“是啊,然后,邻居家的老奶奶无论如何都要,所以就把剩下的一半和另外半只给了她。这就是只剩下1只小猫的原因。那么你想想看,一共生了几只小猫呢?

4、被虫子吃掉的算式

一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(因为没有墨水)。

那么,请问原来的算式是什么样子的呢?

5、巧动火柴

用16根火柴摆成5个正方形。请移动2根火柴,使正形变成4。

6、折过来的角

把正三角形的纸如图那样折过来时,角?的度数是多少度?

7、星形角之和

求星形尖端的角度之和。

8、啊!双胞胎?

丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。

结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢?

9、赠送和降价哪个更好?

1罐100元的咖啡,“买5罐送1罐”和“买5罐便宜20%”这两种促销方法哪一种好呢?还是两种方法一样好?

10、折成15度

折纸做成45度很简单是吧。那么,请折成15度,你会吗?

高中数学教学优秀教案篇4

学习目标

明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.

学习过程

一、学前准备

复习:

1.(课本P28A13)填空:

(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是 ;

(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是 ;

(3)5名工人要在3天中各自选择1天休息,不同方法的种数是 ;

(4)集合A有个 元素,集合B有 个元素,从两个集合中各取1个元素,不同方法的种数是 ;

二、新课导学

探究新知(复习教材P14~P25,找出疑惑之处)

问题1:判断下列问题哪个是排列问题,哪个是组合问题:

(1)从4个风景点中选出2个安排游览,有多少种不同的方法?

(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?

应用示例

例1.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?

例2.7位同学站成一排,分别求出符合下列要求的不同排法的种数.

(1) 甲站在中间;

(2)甲、乙必须相邻;

(3)甲在乙的左边(但不一定相邻);

(4)甲、乙必须相邻,且丙不能站在排头和排尾;

(5)甲、乙、丙相邻;

(6)甲、乙不相邻;

(7)甲、乙、丙两两不相邻。

高中数学教学优秀教案篇5

一、单元教学内容

(1)算法的基本概念

(2)算法的基本结构:顺序、条件、循环结构

(3)算法的基本语句:输入、输出、赋值、条件、循环语句

二、单元教学内容分析

算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力

三、单元教学课时安排:

1、算法的基本概念 3课时

2、程序框图与算法的基本结构 5课时

3、算法的基本语句 2课时

四、单元教学目标分析

1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义

2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

五、单元教学重点与难点分析

1、重点

(1)理解算法的含义

(2)掌握算法的基本结构

(3)会用算法语句解决简单的实际问题

2、难点

(1)程序框图

(2)变量与赋值

(3)循环结构

(4)算法设计

六、单元总体教学方法

本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

七、单元展开方式与特点

1、展开方式

自然语言→程序框图→算法语句

2、特点

(1)螺旋上升 分层递进

(2)整合渗透 前呼后应

(3)三线合一 横向贯通

(4)弹性处理 多样选择

八、单元教学过程分析

1. 算法基本概念教学过程分析

对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

2.算法的流程图教学过程分析

对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

3. 基本算法语句教学过程分析

经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,

4. 通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

九、单元评价设想

1.重视对学生数学学习过程的评价

关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

2.正确评价学生的数学基础知识和基本技能

关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

高中数学教学优秀教案篇6

一、课题:

人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》

二、指导思想与理论依据:

《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,开展“数学建模”的学习活动,把数学的应用自然地融合在平常的教学中。任何一个数学概念的引入,总有它的现实或数学理论发展的需要。都应强调它的现实背景、数学理论发展背景或数学发展历史上的背景,这样才能使教学内容显得自然和亲切,让学生感到知识的发展水到渠成而不是强加于人,从而有利于学生认识数学内容的实际背景和应用的价值。在教学设计时,既要关注学生在数学情感态度和科学价值观方面的发展,也要帮助学生理解和掌握数学基础知识和基本技能,发展能力。在课程实施中,应结合教学内容介绍一些对数学发展起重大作用的历史事件和人物,用以反映数学在人类社会进步、人类文化建设中的作用,同时反映社会发展对数学发展的促进作用。

三、教材分析:

本节内容主要学习对数的概念及其对数式与指数式的互化。它属于函数领域的知识。而对数的概念是对数函数部分教学中的核心概念之一,而函数的思想方法贯穿在高中数学教学的始终。通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的相关问题。

四、学情分析:

在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的需要。因此,在前面学习指数的基础上学习对数的概念是水到渠成的事。

五、教学目标:

(一)教学知识点:

1.对数的概念。

2.对数式与指数式的互化。

(二)能力目标:

1.理解对数的概念。

2.能够进行对数式与指数式的互化。

(三)德育渗透目标:

1.认识事物之间的相互联系与相互转化,

2.用联系的观点看问题。

六、教学重点与难点:

重点是对数定义,难点是对数概念的理解。

七、教学方法:

讲练结合法八、教学流程:

问题情景(复习引入)——实例分析、形成概念(导入新课)——深刻认识概念(对数式与指数式的互化)——变式分析、深化认识(对数的性质、对数恒等式,介绍自然对数及常用对数)——练习小结、形成反思(例题,小结)

八、教学反思:

对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,教材内容的处理收到了一定的预期效果,尤其是练习的处理,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。

对于本教学设计,时间仓促,不足之处在所难免,期待与各位同仁交流。

高中数学教学优秀教案篇7

一、目标

1.知识与技能

(1)理解流程图的顺序结构和选择结构。

(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

2.过程与方法

学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

3情感、态度与价值观

学生通过动手作图,.用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。

二、重点、难点

重点:算法的顺序结构与选择结构。

难点:用含有选择结构的流程图表示算法。

三、学法与教学用具

学法:学生通过动手作图,.用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

教学用具:尺规作图工具,多媒体。

四、教学思路

(一)、问题引入 揭示题

例1 尺规作图,确定线段的一个5等分点。

要求:同桌一人作图,一人写算法,并请学生说出答案。

提问:用字语言写出算法有何感受?

引导学生体验到:显得冗长,不方便、不简洁。

教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

本节要学习的是顺序结构与选择结构。

右图即是同流程图表示的算法。

(二)、观察类比 理解题

1、 投影介绍流程图的符号、名称及功能说明。

符号 符号名称 功能说明

终端框 算法开始与结束

处理框 算法的各种处理操作

判断框 算法的各种转移

输入输出框 输入输出操作

指向线 指向另一操作

2、讲授顺序结构及选择结构的概念及流程图

(1)顺序结构

依照步骤依次执行的一个算法

流程图:

(2)选择结构

对条进行判断决定后面的步骤的结构

流程图:

3.用自然语言表示算法与用流程图表示算法的比较

(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。

解:

算法(自然语言)

①把10赋与r

②用公式 求s

③输出s

流程图

(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

算法:(语言表示)

① 输入X值

②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值

③输出Y的值

流程图

小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

(三)模仿操作 经历题

1.用流程图表示确定线段A.B的一个16等分点

2.分析讲解例2;

分析:

思考:有多少个选择结构?相应的流程图应如何表示?

高中数学教学优秀教案篇8

一、概述

教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式

二、教学目标分析

1. 知识目标

1)

2) 掌握等比数列的定义 理解等比数列的通项公式及其推导

2.能力目标

1)学会通过实例归纳概念

2)通过学习等比数列的通项公式及其推导学会归纳假设

3)提高数学建模的能力

3、情感目标:

1)充分感受数列是反映现实生活的模型

2)体会数学是来源于现实生活并应用于现实生活

3)数学是丰富多彩的而不是枯燥无味的

三、教学对象及学习需要分析

1、 教学对象分析:

1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。

2)对归纳假设较弱,应加强这方面教学

2、学习需要分析:

四. 教学策略选择与设计

1.课前复习

1)复习等差数列的概念及通向公式

2)复习指数函数及其图像和性质

2.情景导入

1637173