关于人工智能的研究论文(2)
关于人工智能的研究论文篇二
研究生人工智能课程教学探索
摘要:从研究生教学特点和人工智能学科的自身特点出发,结合多年来研究生课堂教学实践,探讨在人工智能课程中采用基于问题的启发式教学、基于案例的探究式教学等教学方法。实践表明,这些方法不仅能使学生深入理解人工智能的基本概念和理论,而且有利于培养学生的创新和科研能力。
关键词:人工智能;研究生教学;教学方法
人工智能是一门研究机器智能的学科,是在研究人类智能行为规律的基础上,利用人工的方法和技术,研制智能机器或智能系统来模仿、延伸和扩展人的智能,实现智能行为。在知识经济向智能经济高度发展的今天,人工智能具有重要的理论意义和社会价值。人工智能理论已经渗透到各个领域,人工智能技术也得到广泛应用,许多研究成果已经进入人们的生活。
人工智能课程是一门多学科交叉的课程,具有很强前沿性,涉及哲学、认知科学、行为科学、脑科学、生理学、心理学、语言学、逻辑学、物理学、数学等众多领域;涉及面宽,内容广泛,更新快。人工智能课程的开设能够更好地培养学生的创新思维和技术创新能力,培养学生对计算机前沿技术的前瞻性,提高他们的科技素质和学术水平[1]。
人工智能课程内容的广泛性、前沿性和应用性特点决定了授课方法的多样性。与本科生相比,研究生在教育目标和身心特征方面都有较大的区别。笔者多年从事研究生人工智能课程教学工作,现总结多年教学经验如下。
1研究生培养目标及其教学特点
研究生教育阶段的教育目标是使研究生形成具有个性化的研究品格、研究定向和研究视野,以具有独立思考并获得独创研究成果的能力[2]。从这一意义上讲,个性化是研究生教育培养目标的构成主体。尤其随着我国经济持续高速增长,社会对知识创新、新经济生长点的期望值增大,这就要求我国研究生教育在其培养目标的定位上不仅要重视人才培养的高层次性,更要重视创新能力、实践能力和创业精神的培养。并且,研究生身心发展已较成熟,具有较稳定的个性特征,思维力强,具有较高的专业性思维意识和创造力,为独立地进行专业研究活动提供了心理上和智力上的保证。而且,研究生已具备了基础理论和专业知识,特别是有一定工作经历的研究生,他们不仅有本科教育阶段的知识积累,也有应用这些知识的经验,对于扩大其专业知识领域并进行研究有着积极主动的态度。总之,从年龄构成及身心特征上讲,研究生适应高层次、跨学科知识领域的学习和研究。
研究生的特征及其教育目标决定了研究生教学不应该是由教师讲授已定论的知识,而应是以教学为基本依托,通过教学提出具有研究性、探索性、未确定性甚至是尚存争议性的课题,激励研究生独立思考和质疑,让他们在思考和质疑的过程中提出问题,培育他们发现问题、提出质疑的科学批判精神,训练并提高其创新能力、实践能力和创新精神。创新精神和创新能力主要表现在具有健全的人格、强烈的责任感、开放的心态、团结合作的精神、严谨科学的思维能力和创新思维方式。
个性是创新的源泉,研究生课程体系的设置应该具有一定的灵活性,依据研究生不同的知识基础和研究定向,设置具有弹性化的课程,使研究生的个性化得以凸显。另外,为提高研究生专业研究和创新能力,在课程教学中,也应凸显教学的研究性和专业性,重视专业领域背景知识和研究方法的讲授,开展跨学科、非专业知识的教学,教学内容应涵盖专业领域的研究热点、难点、争议问题和最新研究动态,还应包括交叉学科、边缘学科的研究趋势,以扩展学生的视野[3]。也就是说,研究生教学既要凸显研究生的个性化特点,又要凸显内容的学术性和研究的指向性。
2人工智能课程的特点
2.1多学科交叉,具有很强的前沿性
人工智能是一门多学科交叉的课程。课程内容的理解需要运用多学科知识和较强的逻辑思维能力,多学科的知识相互联系、相互交叉,融合形成新的知识,成为新的思维方法和综合能力的萌发点。通过课程学习,学生可以通过不同学科知识的融合来达到对原有知识的超越,用一种全新的思维方法来思考所遇到的问题,提出新的解决办法。这也是创造力的迸发和智能的飞跃。具有了知识的广度和深度才具有融会贯通、创新的可能,人工智能课程的开设能够更好地培养学生的创新思维和技术创新能力,为学生提供一种新的思维方法和问题求解手段。
2.2涉及面宽,内容广泛,更新快
人工智能课程是一门知识点较多的课程,它以概率统计、离散数学、数据结构、计算机编程语言、数据库原理等课程为基础,涵盖了模式识别、机器学习、数据挖掘、计算智能、自然语言理解、专家系统等众多研究方向,内容涉及面广,概念抽象,不易理解。并且,人工智能课程内容更新快,近年来人工智能科学的快速发展,涌现出了大批新方法,研究热点问题也从符号计算发展到智能计算和Agent等。其中,计算智能主要涉及神经计算、模糊计算、进化计算和人工生命等领域,在模式识别、图像处理、自动控制、通信网络等很多领域都得到了成功应用;Agent最早来自分布式人工智能,随着并行计算和分布式处理等技术的发展而逐渐成为热点。
在互联网上有大量最新的与课程内容相关的研究论文,为学生提供了很好的查阅文献的环境,使学生能够根据所学习的内容和所在课题组的研究方向阅读相应文献,提高学生的学习兴趣和独立提出问题、解决问题的能力。
2.3应用性强
人工智能理论已经渗透到科学的各个领域,当前,几乎所有的科学与技术分支都在共享着人工智能领域所提供的理论和技术。例如,自第一个专家系统DENDRAL研制成功以来,专家系统已成功地应用于数学、物理、化学、医学、地质、气象、农业、法律、教育、交通运输、军事、经济等几乎所有领域;数据挖掘技术是以一种更自动化的方式对具有大量数据的商业活动进行分析和预测,在市场营销、银行、制造业、保险业、计算机安全、医药、交通、电信等领域已有许多案例;语义Web让Web上的信息能够被机器所理解,实现Web信息的自动处理,成功地将人工智能的研究成果应用到互联网。另外,在机器视觉、自然语言理解、智能控制与智能制造等方面,人工智能技术也得到广泛的应用,有许多研究成果已经进入人们的生活。目前,从理论到技术,从产品到工程,从家庭到社会,智能无处不在,人工智能广泛的应用性给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。
人工智能课程的多学科交叉性、内容广泛性、概念抽象、不易理解以及前沿性和应用性特点决定了在该课程的讲授过程中应该采用多种授课方法。多种授课方法的采用一方面便于授课内容的理解,另一方面也能够更好地培养学生的创新思维和技术创新能力,提高他们的科技素质和学术水平。
3人工智能课程教学方法
3.1基于问题的启发式教学法
苏霍姆林斯基说:“唤起人实行自我教育,乃是一种真正的教育。”基于问题的启发式教学法是教师在深入了解学生心理特点和学习规律的基础上,设计适合教学的启发式问题,并采取灵活多样、生动活泼的启发方式,充分调动学生的学习兴趣,激发、引导学生进行科学思维,培养学生独立思考问题、提出问题和解决问题的能力。该教学方法强调的是过程,教师的主要任务是提出问题,依据举一反三的思路引导学生展开逻辑推理,通过逐层分析深入思考问题,最后综合学生观点阐述相关理论。
在课程教学中,有许多内容适合于采用启发式教学方法。例如,在知识表示方法的学习过程中,教师首先提出问题:“你是怎样进行数学定理证明的?”并在学生的回答过程中,引导学生认识到知识及其表示的重要性;随后,提出问题:“在计算机中如何表示知识?”引导学生逐步总结出不同知识表示方法在知识表达能力、推理效率、可实现性、可组织性、可维护性方面的区别。另外,在确定性推理的教学过程中,教师可以利用“某处发生盗窃案,公安局派出5个侦查员去调查,研究案情时,5个侦查员各给出了一句可信的结论,据此判断谁是盗窃犯”的问题[4],让学生进行判断和讨论,引导学生认识到推理过程中可以使用多条规则进行推理,并且推理路线也可能存在多条,从而引出推理的两大基本问题:解决冲突消解等问题的推理策略,以及解决推理线路等问题的搜索策略。
看了“关于人工智能的研究论文”的人还看了:
5.人工智能毕业论文
7.人工智能应用论文