2019年备战高考:高中生物光合作用的知识点汇总
光合作用,在高考全面复习中不再是知识的简单重复,下面学习啦小编为你带来了2019年备战高考:高中生物光合作用的知识点汇总,欢迎阅读。
生物知识点:光合作用
1、光合作用的发现:①1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而死,证明:植物可以更新空气。②1864年,德国科学家把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。证明:绿色叶片在光合作用中产生了淀粉。③1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。证明:叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。④20世纪30年代美国科学家鲁宾卡门采用同位素标记法研究了光合作用。第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2O和C18O,释放的是O2。光合作用释放的氧全部来自来水。
2、叶绿体的色素:①分布:基粒片层结构的薄膜上。②色素的种类:高等植物叶绿体含有以下四种色素。A、叶绿素主要吸收红光和蓝紫光,包括叶绿素a(蓝绿色)和叶绿素b(黄绿色);B、类胡萝卜素主要吸收蓝紫光,包括胡萝卜素(橙黄色)和叶黄素(黄色)
3、叶绿体的酶:分布在叶绿体基粒片层膜上(光反应阶段的酶)和叶绿体的基质中(暗反应阶段的酶)。
4、光合作用的过程:①光反应阶段a、水的光解:2H2O→4[H]+O2(为暗反应提供氢)b、ATP的形成:ADP+Pi+光能─→ATP(为暗反应提供能量)②暗反应阶段:a、CO2的固定:CO2+C5→2C3b、C3化合物的还原:2C3+[H]+ATP→(CH2O)+C5
5、光反应与暗反应的区别与联系:①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。②条件:光反应需要光、叶绿素等色素、酶,暗反应需要许多有关的酶。③物质变化:光反应发生水的光解和ATP的形成,暗反应发生CO2的固定和C3化合物的还原。④能量变化:光反应中光能→ATP中活跃的化学能,在暗反应中ATP中活跃的化学能→CH2O中稳定的化学能。⑤联系:光反应产物[H]是暗反应中CO2的还原剂,ATP为暗反应的进行提供了能量,暗反应产生的ADP和Pi为光反应形成ATP提供了原料。
6、光合作用的意义:①提供了物质来源和能量来源。②维持大气中氧和二氧化碳含量的相对稳定。
③对生物的进化具有重要作用。总之,光合作用是生物界最基本的物质代谢和能量代谢。
7、影响光合作用的因素:有光照(包括光照的强度、光照的时间长短)、二氧化碳浓度、温度(主要影响酶的作用)和水等。这些因素中任何一种的改变都将影响光合作用过程。如:在大棚蔬菜等植物栽种过程中,可采用白天适当提高温度、夜间适当降低温度(减少呼吸作用消耗有机物)的方法,来提高作物的产量。再如,二氧化碳是光合作用不可缺少的原料,在一定范围内提高二氧化碳浓度,有利于增加光合作用的产物。当低温时暗反应中(CH2O)的产量会减少,主要由于低温会抑制酶的活性;适当提高温度能提高暗反应中(CH2O)的产量,主要由于提高了暗反应中酶的活性。
8、光合作用过程可以分为两个阶段,即光反应和暗反应。前者的进行必须在光下才能进行,并随着光照强度的增加而增强,后者有光、无光都可以进行。暗反应需要光反应提供能量和[H],在较弱光照下生长的植物,其光反应进行较慢,故当提高二氧化碳浓度时,光合作用速率并没有随之增加。光照增强,蒸腾作用随之增加,从而避免叶片的灼伤,但炎热夏天的中午光照过强时,为了防止植物体内水分过度散失,通过植物进行适应性的调节,气孔关闭。虽然光反应产生了足够的ATP和[H],但是气孔关闭,CO2进入叶肉细胞叶绿体中的分子数减少,影响了暗反应中葡萄糖的产生。
9、在光合作用中一些考点:a、由强光变成弱光时,[产生的H]、ATP数量减少,此时C3还原过程减弱,而CO2仍在短时间内被一定程度的固定,因而C3含量上升,C5含量下降,(CH2O)的合成率也降低。b、CO2浓度降低时,CO2固定减弱,因而产生的C3数量减少,C5的消耗量降低,而细胞的C3仍被还原,同时再生,因而此时,C3含量降低,C5含量上升。
光合作用需要记住那些知识点呢
1.形象的用“四个车轮”来理解光合作用的过程
从图中可以看出:“四个车轮”是同时转动,若有一个停止,则四个车轮同时受影响。在日常生活中很容易观察到这一现象。用形象事物来比喻光合作用的光反应阶段和暗反应阶段,以及两个阶段的相互联系,中间的两个“车轮”分别是ATP和NADPH的形成,如果暗反应停止,这两种物质的形成也会受影响,最终停止。增强了学生的记忆和理解效果,同时培养学生事物是相互联系,发展变化的世界观。
2.分析“四个车轮”中的物质变化
“车轮一”中:少数的叶绿素a在光的激发下失去电子,变成强氧化剂,从而夺取水中的电子,使水分子氧化成氧分子和氢离子,叶绿素a由于获得电子而恢复原状,这样往复循环,形成电子流,将光能转化成电能。
“车轮二”中:ATP在光反应中合成,在暗反应中水解并释放出能量,供能给暗反应阶段中合成有机物。
“车轮三”中:NADP+在光反应中得到叶绿素a提供的电子(e)和“车轮一”中水分解产生的H+,就形成了NADPH。NADPH是很强的还原剂,在暗反应中将二氧化碳还原为糖类等有机物,自身氧化成NADP+。
“车轮四”中:CO2被固定后形成三碳化合物(C3),经过一系列复杂的变化,并最终形成糖类等有机物。
从图中分析可知如果光合作用形成1molC6H12O6,,则“车轮四”中物质的量变化,只需在原来的基础上乘以系数6即可。
3.“四个车轮”中的能量转化
“车轮一”中:光能转化为电能。
“车轮二、三”中:电能转化为活跃的化学能ATP、NADPH。
“车轮四”中:活跃的化学能ATP、NADPH转化为稳定的化学能储存在糖类等有机物中。
4.书写“四个车轮”中的化学反应式
“车轮一”中:
“车轮二”中:
“车轮三”中:
“车轮四”中:
5.“四个车轮”中的条件及联系
“车轮一”中:必须提供光能,H2O作为原料,与光能转化相关的色素的形成需要某些矿质元素,如Mg。
“车轮二、三”中:酶是必要的条件,如:N、P是ATP、NADPH、NADP+的构成元素。
“车轮四”中:CO2是光合作用的原料,需要多种酶的催化完成反应,同时需要“车轮二、三”中提供ATP、NADPH。
这样分析得知光合作用必需H2O、CO2作为原料,需要光,矿质元素,酶活性受温度的影响,,从而影响光合作用,所以需要适宜的温度等。
6 .“车轮一”中的四种色素
参与光合作用光反应的四种光合色素,都溶于有机溶剂。叶绿素包括叶绿素a和叶绿素b,主要吸收红橙光和蓝紫光;少数处于特殊状态的叶绿素a能吸收、转化光能,多数的叶绿素a和全部的叶绿素b能吸收、传递光能。类胡萝卜素包括叶黄素和胡萝卜素,主要吸收蓝紫光;都能吸收、传递光能。
7.“四个车轮”中的应用
理解了影响光合作用的因素,在农业生产中要提高农作物光合作用效率,就要根据影响光合作用的因素,合理的控制某些条件。
根据不同植物对光的需求,适当的控制光照条件或选择适合的种植区域。在生产上应用如:合理密植、温室大棚使用玻璃或薄膜的选材(若要降低光合作用使用有色的玻璃或薄膜)
根据温度直接影响酶的活行,从而影响光合作用。在生产上适时播种、温室栽培适当的控制白天、晚上的温差。
根据二氧化碳是光合作用的原料。在生产上采取措施提高CO2浓度(如施用有机肥)。
必需矿质元素直接或间接影响光合作用,要合理施肥。
水分是光合作用的原料之一。预防干旱、合理灌溉。
8.四种典型的图形(影响光合速率的因素)
光照强度
一定范围内光合作用的速率随光照强度提高而加快,达到一定光照强度不再增加。
CO2浓度
一定范围内随CO2浓度增加光合作用速率加快,达到一定浓度光合作用速率不再增加。
温度
温度直接影响酶活性、从而影响其他相关代谢而影响光合作用。
叶龄
随叶龄的改变,光合作用的速率也发生变化。
9.光合作用的四点重要意义
物质合成:将无机物合成有机物
能量转化:将太阳能转化为化学能
环境保护:维持大气中O2和CO2含量的相对稳定
对生物进化具有重要意义