学习啦 > 新闻资讯 > 学习资讯 > 高中数学解题常用的几种解题思路和技巧

高中数学解题常用的几种解题思路和技巧

时间: 睿柠1003 分享

高中数学解题常用的几种解题思路和技巧

  数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动,所以数学的解题思路和技巧非常重要。下面是小编分享的高中数学解题常用的几种解题思路和技巧,一起来看看吧。

  高中数学解题的思路

  一、数形结合法

  高中数学题目对我们的逻辑思维、空间思维以及转换思维都有着较高要求,其具有较强的推证性和融合性,所以我们在解决高中数学题目时,必须严谨推导各种数量关系。很多高中题目都并不是单纯的数量关系题,其还涉及到空间概念和其他概念,所以我们可以利用数形结合法理清题目中的各种数量关系,从而有效解决各种数学问题。

  数形结合法主要是指将题目中的数量关系转化为图形,或者将图形转化为数量关系,从而将抽象的结构和形式转化为具体简单的数量关系,帮助我们更好解决数学问题。例如,题目为“有一圆,圆心为O,其半径为1,圆中有一定点为A,有一动点为P,AP之间夹角为x,过P点做OA垂线,M为其垂足。假设M到OP之间的距离为函数f(x),求y=f(x)在[0,?仔]的图像形状。”

  这个题目涉及到了空间概念以及函数关系,所以我们在解决这个题目时不能只从一个方面来思考问题,也不能只对题目中的函数关系进行深入挖掘。从已知条件可知题目要求我们解决几何图形中的函数问题,所以我们可以利用数形结合思想来解决这个问题。首先我们可以根据已知条件绘出相应图形,如图1,显示的是依据题目中的关系绘制的图形。

  根据题目已知条件可知圆的半径为1,所以OP=1,∠POM=x,OM=|cos|,然后我们可以建立关于f(x)的函数方程,可得所以我们可以计算出其周期为,其中最小值为0,最大值为,根据这些数量关系,我们可以绘制出y=f(x)在[0,?仔]的图像形状,如图2,显示的是y=f(x)在[0,?仔]的图像。

  二、排除解题法

  排除解题法一般用于解决数学选择题,当我们应用排除法解决问题时,需掌握各种数学概念及公式,对题目中的答案进行论证,对不符合论证关系的答案进行排除,从而有效解决数学问题。当我们在解决选择题时,必须将题目及答案都认真看完,对其之间的联系进行合理分析,并通过严谨的解题思路将不符合论证关系的条件进行排除,从而选择正确的答案。

  排除解题法主要用于缩小答案范围,从而简化我们的解题步骤,提高接替效率,这样方法具有较高的准确率。例如,题目为“z的共轭复数为z,复数z=1+i,求zz-z-1的值。选项A为-2i、选项B为i、选项C为-i、选项D为2i。”

  当我们在解决这个题目时,不仅要对题目已知条件进行合理分析,而且还要对选项进行合理考虑,并根据它们之间的联系进行有效论证。我们可以采取排除法来解决这个问题,已知z=1+i,所以我们可以求出z的共轭复数,由于题目中含有负号,所以我们可以排除B项和D项;然后我们可以将z的共轭复数带进表达式,可得zz-z-1=(1+i)(1-i)-1-i-1=-i,所以我们可以将A项排除,最终选择C项。

  三、方程解题法

  很多数学题目中有着复杂的数量关系,而且涉及到许多知识点,当我们在解析题目中的数量关系时,如果直接对其数量关系进行分析,不仅增加我们解题过程,还会提高题目整体难度,这样我们就难以理清题目中的各种关系,给我们有效解决题目带来较大麻烦。

  数学题目中的各种数量关系大都具有紧密联系,所以我们可以利用方程解题法建立多种数量关系,简化解题步骤,帮助我们更好解决数学问题。例如,题目为“双曲线C的离心率是2,其焦点主要为F1和F2,双曲线C上有一点A,如果|F1A|=2|F2A|,求cos∠AF2F1的值。”

  这个问题中存在着较抽象的数量关系,如果直接利用已知条件求cos∠AF2F1的值,不仅会增加我们的解题步骤,而且很容易出现错误,所以我们可以利用方程解题法来解决这个问题。首先,由已知条件双曲线C的离心率是2可得出C=2a;然后可根据双曲线上点A建立表达式,2a=|F1A|-|F2A|,所以可计算出|F1A|=4a,|F2A|=2a,|F1F2|=2c;最后我们可以通过余弦定理建立方程式,

  所以最后我们可以得出cos∠AF2F1的值为。

  高中数学的解题方法

  1.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了。

  2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!

  3.三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。省时省力!

  4.空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!

  5.立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简单!

  6.选择题中考线面关系的可以先从D项看起前面都是来浪费你时间的

  7.选择题中求取值范围的直接观察答案从每个选项中取与其他选项不同的特殊点带入能成立的就是答案

  8.线性规划题目直接求交点带入比较大小即可

  9.遇到这样的选项A.1/2,B.1,C.3/2,D.5/2这样的话答案一般是D因为B可以看作是2/2前面三个都是出题者凑出来的如果答案在前面3个的话D应该是2(4/2)

  高考数学的题型安排

  第一部分:选择与填空

  1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);

  2.常用逻辑用语(充要条件,全称量词与存在量词的判定);

  3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);

  4.幂、指、对函数式运算及图像和性质

  5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);

  6.空间体的三视图及其还原图的表面积和体积;

  7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;

  8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;

  9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);

  10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;

  11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;

  12.向量数量积、坐标运算、向量的几何意义的应用;

  13.正余弦定理应用及解三角形;

  14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;

  15.线性规划的应用;会求目标函数;

  16.圆锥曲线的性质应用(特别是会求离心率);

  17.导数的几何意义及运算、定积分简单求法

  18.复数的概念、四则运算及几何意义;

  19.抽象函数的识别与应用;

  第二部分:解答题

  第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;

  第18题:(文)概率与统计(概率与统计相结合型)

  (理)离散型随机变量的概率分布列及其数字特征;

  第19题:立体几何

  ①证线面平行垂直;面与面平行垂直

  ②求空间中角(理科特别是二面角的求法)

  ③求距离(理科:动态性)空间体体积;

  第20题:解析几何(注重思维能力与技巧,减少计算量)

  ①求曲线轨迹方程(用定义或待定系数法)

  ②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)

  ③求定点、定值、最值,求参数取值的问题;

  第21题:函数与导数的综合应用

  这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。

  主要考查:分类讨论思想;化归、转化、迁移思想;整体代换、分与合思想

  一般设计三问:

  ①求待定系数,利用求导讨论确定函数的单调性;

  ②求参变数取值或函数的最值;

  ③探究性问题或证不等式恒成立问题。

  第22题:三选一:

  (1)几何证明主要考查三角形相似,圆的切割线定理,证明成比例,求角度,求长度;利用射影定理解决圆中计算和证明问题是历年高考题的热点;

  (2)坐标系与参数方程,主要抓两点:参数方程、极坐标方程互化为普通方程;有参数、极坐标方程求解曲线的基本量。这类题,思路清晰,难度不大,抓基础,不做难题。

  (3)不等式选讲:绝对值不等式与函数结合型。设计上为:①解含有参变数关于x的不等式;②求解不等式恒成立时参变数的取值;③证明不等式(利用均值定理、放缩法等)。


猜你感兴趣:

1.高考单选题解题思路及技巧

2.学好高二数学的方法和技巧有哪些

3.高考数学答题规律和思路汇总

4.高考数学的答题方法与技巧有哪些

5.高考数学必知的六个答题技巧

3839154